Volume 44, Issue 3 p. 792-811
RESEARCH ARTICLE

Capability of satellite data to estimate observed precipitation in southeastern South America

Victoria D. Benítez

Victoria D. Benítez

Centro de Estudios de Variabilidad y Cambio Climático (CEVARCAM), Universidad Nacional del Litoral, Santa Fe, Argentina

Contribution: Software, ​Investigation, Methodology, Visualization, Formal analysis, Validation, Conceptualization, Writing - original draft, Data curation

Search for more papers by this author
Fernando P. Forgioni

Fernando P. Forgioni

Departamento de Fisica. Centro de Ciências Naturais e Exatas, Universidade Federal de Santa María, Santa María, Brasil

Contribution: Conceptualization, ​Investigation, Methodology, Software, Writing - review & editing, Visualization, Formal analysis, Validation, Data curation

Search for more papers by this author
Miguel A. Lovino

Miguel A. Lovino

Centro de Estudios de Variabilidad y Cambio Climático (CEVARCAM), Universidad Nacional del Litoral, Santa Fe, Argentina

Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina

Contribution: Writing - review & editing, Conceptualization, Supervision

Search for more papers by this author
Leandro Sgroi

Leandro Sgroi

Centro de Estudios de Variabilidad y Cambio Climático (CEVARCAM), Universidad Nacional del Litoral, Santa Fe, Argentina

Contribution: Writing - review & editing, Conceptualization, Supervision

Search for more papers by this author
Moira E. Doyle

Moira E. Doyle

Departamento de Ciencias de la Atmósfera y los Océanos, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina

CONICET-Universidad de Buenos Aires, Centro de Investigaciones del Mar y la Atmósfera (CIMA), Buenos Aires, Argentina

CNRS-IRD-CONICET-UBA, Instituto Franco-Argentino para el Estudio del Clima y sus Impactos (IRL 3351 IFAECI), Buenos Aires, Argentina

Contribution: Writing - review & editing, Supervision, Conceptualization

Search for more papers by this author
Gabriela V. Müller

Corresponding Author

Gabriela V. Müller

Centro de Estudios de Variabilidad y Cambio Climático (CEVARCAM), Universidad Nacional del Litoral, Santa Fe, Argentina

Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina

Correspondence

Gabriela V. Müller, CONICET, CEVARCAM (FICH-UNL) Ciudad Universitaria, Santa Fe 3000, Argentina.

Email: [email protected]

Contribution: Funding acquisition, Resources, Project administration, Supervision, Writing - review & editing, Conceptualization

Search for more papers by this author
First published: 19 January 2024
Citations: 2

Abstract

Precipitation is a fundamental component of the water cycle. Satellite-derived precipitation estimates with high spatial resolution and daily to subdaily temporal resolution become very important in regions with a limited ground-based measurement network, such as southeastern South America (SESA). This study evaluates the performance of four state-of-the-art satellite products, including IMERG V.06 Final Run, PERSIANN, PERSIANN CCS-CDR and PDIR-NOW in representing observed precipitation over SESA during the 2001–2020 period. The ability of each product to represent observed annual and seasonal precipitation patterns was assessed. Statistical and categorical evaluation metrics were used to evaluate the performance of satellite precipitation estimates at monthly and daily timescales. Our results report that IMERG and CCS-CDR achieve the best performance in estimating observed precipitation patterns at annual and seasonal timescales. While all satellite products effectively identify autumn and spring precipitation patterns, they struggle to represent winter and summer patterns. Notably, all satellite precipitation products have a better agreement with observed precipitation in wetter regions compared to drier regions, as indicated by the spatial distribution of continuous validation metrics. IMERG stands out as the most accurate product, reaching the highest correlation coefficients (0.75 < CC < 0.95) and Kling–Gupta efficiencies (0.65 < KGE < 0.85, rate as good to very good performance). Regarding categorical statistical metrics, IMERG correctly estimates the fraction of observed rainy days (POD > 0.7, CSI > 0.6) and shows the lowest fraction of estimated precipitation events that did not occur. PERSIANN, CCS-CDR and PDIR-NOW exhibit lower performances, mainly in drier areas. Moreover, PERSIANN and PDIR-NOW tend to overestimate observed precipitation in almost the entire SESA region. We expect this validation study will provide greater reliability to satellite precipitation estimates, in order to provide an alternative that complement the scarce observed information available for decision-making in water management and agricultural planning.

DATA AVAILABILITY STATEMENT

The IMERG data are available at NASA's EARTHDATA GPM through NASA GES DISC at https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGHH_06/summary?keywords=%22IMERG%20final%22. The PERSIANN, PERSIANN CCS-CDR and PDIR-NOW satellite products are available at the Center for Hydrometeorology and Remote Sensing (CHRS; https://chrs.web.uci.edu). The observed data were provided by the national official institutions: Servicio Meteorológico Nacional (SMN) in Argentina; three Brazilian agencies: Instituto Nacional de Meteorología (INMET), Agência Nacional de Águas e Saneamento Básico del Sistema Nacional de Informações sobre Recursos Hídricos (ANA-Hidroweb-SNIRH), Sistema de Información Hidrológica (SIH); Dirección de Meteorología e Hidrología de la Dirección Nacional de Aviación Civil (DMH-DINAC) in Paraguay and Instituto Meteorológico de Uruguay (INUMET) in Uruguay.