Capability of satellite data to estimate observed precipitation in southeastern South America
Victoria D. Benítez
Centro de Estudios de Variabilidad y Cambio Climático (CEVARCAM), Universidad Nacional del Litoral, Santa Fe, Argentina
Contribution: Software, Investigation, Methodology, Visualization, Formal analysis, Validation, Conceptualization, Writing - original draft, Data curation
Search for more papers by this authorFernando P. Forgioni
Departamento de Fisica. Centro de Ciências Naturais e Exatas, Universidade Federal de Santa María, Santa María, Brasil
Contribution: Conceptualization, Investigation, Methodology, Software, Writing - review & editing, Visualization, Formal analysis, Validation, Data curation
Search for more papers by this authorMiguel A. Lovino
Centro de Estudios de Variabilidad y Cambio Climático (CEVARCAM), Universidad Nacional del Litoral, Santa Fe, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Contribution: Writing - review & editing, Conceptualization, Supervision
Search for more papers by this authorLeandro Sgroi
Centro de Estudios de Variabilidad y Cambio Climático (CEVARCAM), Universidad Nacional del Litoral, Santa Fe, Argentina
Contribution: Writing - review & editing, Conceptualization, Supervision
Search for more papers by this authorMoira E. Doyle
Departamento de Ciencias de la Atmósfera y los Océanos, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
CONICET-Universidad de Buenos Aires, Centro de Investigaciones del Mar y la Atmósfera (CIMA), Buenos Aires, Argentina
CNRS-IRD-CONICET-UBA, Instituto Franco-Argentino para el Estudio del Clima y sus Impactos (IRL 3351 IFAECI), Buenos Aires, Argentina
Contribution: Writing - review & editing, Supervision, Conceptualization
Search for more papers by this authorCorresponding Author
Gabriela V. Müller
Centro de Estudios de Variabilidad y Cambio Climático (CEVARCAM), Universidad Nacional del Litoral, Santa Fe, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Correspondence
Gabriela V. Müller, CONICET, CEVARCAM (FICH-UNL) Ciudad Universitaria, Santa Fe 3000, Argentina.
Email: [email protected]
Contribution: Funding acquisition, Resources, Project administration, Supervision, Writing - review & editing, Conceptualization
Search for more papers by this authorVictoria D. Benítez
Centro de Estudios de Variabilidad y Cambio Climático (CEVARCAM), Universidad Nacional del Litoral, Santa Fe, Argentina
Contribution: Software, Investigation, Methodology, Visualization, Formal analysis, Validation, Conceptualization, Writing - original draft, Data curation
Search for more papers by this authorFernando P. Forgioni
Departamento de Fisica. Centro de Ciências Naturais e Exatas, Universidade Federal de Santa María, Santa María, Brasil
Contribution: Conceptualization, Investigation, Methodology, Software, Writing - review & editing, Visualization, Formal analysis, Validation, Data curation
Search for more papers by this authorMiguel A. Lovino
Centro de Estudios de Variabilidad y Cambio Climático (CEVARCAM), Universidad Nacional del Litoral, Santa Fe, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Contribution: Writing - review & editing, Conceptualization, Supervision
Search for more papers by this authorLeandro Sgroi
Centro de Estudios de Variabilidad y Cambio Climático (CEVARCAM), Universidad Nacional del Litoral, Santa Fe, Argentina
Contribution: Writing - review & editing, Conceptualization, Supervision
Search for more papers by this authorMoira E. Doyle
Departamento de Ciencias de la Atmósfera y los Océanos, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
CONICET-Universidad de Buenos Aires, Centro de Investigaciones del Mar y la Atmósfera (CIMA), Buenos Aires, Argentina
CNRS-IRD-CONICET-UBA, Instituto Franco-Argentino para el Estudio del Clima y sus Impactos (IRL 3351 IFAECI), Buenos Aires, Argentina
Contribution: Writing - review & editing, Supervision, Conceptualization
Search for more papers by this authorCorresponding Author
Gabriela V. Müller
Centro de Estudios de Variabilidad y Cambio Climático (CEVARCAM), Universidad Nacional del Litoral, Santa Fe, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Correspondence
Gabriela V. Müller, CONICET, CEVARCAM (FICH-UNL) Ciudad Universitaria, Santa Fe 3000, Argentina.
Email: [email protected]
Contribution: Funding acquisition, Resources, Project administration, Supervision, Writing - review & editing, Conceptualization
Search for more papers by this authorAbstract
Precipitation is a fundamental component of the water cycle. Satellite-derived precipitation estimates with high spatial resolution and daily to subdaily temporal resolution become very important in regions with a limited ground-based measurement network, such as southeastern South America (SESA). This study evaluates the performance of four state-of-the-art satellite products, including IMERG V.06 Final Run, PERSIANN, PERSIANN CCS-CDR and PDIR-NOW in representing observed precipitation over SESA during the 2001–2020 period. The ability of each product to represent observed annual and seasonal precipitation patterns was assessed. Statistical and categorical evaluation metrics were used to evaluate the performance of satellite precipitation estimates at monthly and daily timescales. Our results report that IMERG and CCS-CDR achieve the best performance in estimating observed precipitation patterns at annual and seasonal timescales. While all satellite products effectively identify autumn and spring precipitation patterns, they struggle to represent winter and summer patterns. Notably, all satellite precipitation products have a better agreement with observed precipitation in wetter regions compared to drier regions, as indicated by the spatial distribution of continuous validation metrics. IMERG stands out as the most accurate product, reaching the highest correlation coefficients (0.75 < CC < 0.95) and Kling–Gupta efficiencies (0.65 < KGE < 0.85, rate as good to very good performance). Regarding categorical statistical metrics, IMERG correctly estimates the fraction of observed rainy days (POD > 0.7, CSI > 0.6) and shows the lowest fraction of estimated precipitation events that did not occur. PERSIANN, CCS-CDR and PDIR-NOW exhibit lower performances, mainly in drier areas. Moreover, PERSIANN and PDIR-NOW tend to overestimate observed precipitation in almost the entire SESA region. We expect this validation study will provide greater reliability to satellite precipitation estimates, in order to provide an alternative that complement the scarce observed information available for decision-making in water management and agricultural planning.
Open Research
DATA AVAILABILITY STATEMENT
The IMERG data are available at NASA's EARTHDATA GPM through NASA GES DISC at https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGHH_06/summary?keywords=%22IMERG%20final%22. The PERSIANN, PERSIANN CCS-CDR and PDIR-NOW satellite products are available at the Center for Hydrometeorology and Remote Sensing (CHRS; https://chrs.web.uci.edu). The observed data were provided by the national official institutions: Servicio Meteorológico Nacional (SMN) in Argentina; three Brazilian agencies: Instituto Nacional de Meteorología (INMET), Agência Nacional de Águas e Saneamento Básico del Sistema Nacional de Informações sobre Recursos Hídricos (ANA-Hidroweb-SNIRH), Sistema de Información Hidrológica (SIH); Dirección de Meteorología e Hidrología de la Dirección Nacional de Aviación Civil (DMH-DINAC) in Paraguay and Instituto Meteorológico de Uruguay (INUMET) in Uruguay.
REFERENCES
- Abebe, S.A., Qin, T., Yan, D., Gelaw, E.B., Workneh, H.T., Kun, W. et al. (2020) Spatial and temporal evaluation of the latest high-resolution precipitation products over the Upper Blue Nile River basin, Ethiopia. Water, 12(11), 3072. Available from: https://doi.org/10.3390/w12113072
- Baez-Villanueva, O.M., Zambrano-Bigiarini, M., Ribbe, L., Nauditt, A., Giraldo-Osorio, J.D. & Thinh, N.X. (2018) Temporal and spatial evaluation of satellite rainfall estimates over different regions in Latin-America. Atmospheric Research, 213, 34–50. Available from: https://doi.org/10.1016/j.atmosres.2018.05.011
- Baig, F., Abrar, M., Chen, H. & Sherif, M. (2023) Evaluation of precipitation estimates from remote sensing and artificial neural network based products (PERSIANN) family in an arid region. Remote Sensing, 15, 1078. Available from: https://doi.org/10.3390/rs15041078
- Berbery, E.H. & Barros, V.R. (2002) The hydrologic cycle of the La Plata basin in South America. Journal of Hydrometeorology, 3(6), 630–645. Available from: https://doi.org/10.1175/1525-7541(2002)003<0630:THCOTL>2.0.CO;2
- Boushaki, F.I., Hsu, K.L., Sorooshian, S., Park, G.H., Mahani, S. & Shi, W. (2009) Bias adjustment of satellite precipitation estimation using ground-based measurement: a case study evaluation over the southwestern United States. Journal of Hydrometeorology, 10(5), 1231–1242. Available from: https://doi.org/10.1175/2009JHM1099.1
- Cancelada, M., Salio, P., Vila, D., Nesbitt, S.W. & Vidal, L. (2020) Backward Adaptive Brightness Temperature Threshold Technique (BAB3T): a methodology to determine extreme convective initiation regions using satellite infrared imagery. Remote Sensing, 12(2), 337. Available from: https://doi.org/10.3390/rs12020337
- Castellanos, E., Lemos, M.F., Astigarraga, L., Chacón, N., Cuvi, N., Huggel, C. et al. (2022) Central and South America. In: H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría et al. (Eds.) Climate change 2022: impacts, adaptation and vulnerability. Contribution of Working Group II to the sixth assessment report of the Intergovernmental Panel on Climate Change. Cambridge and New York, NY: Cambridge University Press, pp. 1689–1816. Available from: https://doi.org/10.1017/9781009325844.014
- Cavalcanti, I.F.A., Carril, A.F., Penalba, O.C., Grimm, A.M., Menéndez, C.G., Sanchez, E. et al. (2015) Precipitation extremes over La Plata Basin—review and new results from observations and climate simulations. Journal of Hydrology, 523, 211–230. Available from: https://doi.org/10.1016/j.jhydrol.2015.01.028
- Cerón, W.L., Molina-Carpio, J., Ayes Rivera, I., Andreoli, R.V., Kayano, M.T. & Canchala, T. (2020) A principal component analysis approach to assess CHIRPS precipitation dataset for the study of climate variability of the La Plata Basin, southern South America. Natural Hazards, 103(1), 767–783. Available from: https://doi.org/10.1007/s11069-020-04011-x
- Contractor, S., Donat, M.G. & Alexander, L.V. (2021) Changes in observed daily precipitation over global land areas since 1950. Journal of Climate, 34, 3–19. Available from: https://doi.org/10.1175/JCLI-D-19-0965.1
- da Silva, L.D.D.D.J., Mahmoud, M., González-Rodríguez, L., Mohammed, S., Rodríguez-López, L. & Arias, M.I.A. (2023) Assessment of the IMERG early-run precipitation estimates over South American country of Chile. Remote Sensing, 15(3), 573. Available from: https://doi.org/10.3390/rs15030573
- de Goncalves, L.G.G., Shuttleworth, W.J., Nijssen, B., Burke, E.J., Marengo, J.A., Chou, S.C. et al. (2006) Evaluation of model-derived and remotely sensed precipitation products for continental South America. Journal of Geophysical Research, 111, D16113. Available from: https://doi.org/10.1029/2005JD006276
- Déqué, M. (2012) Continuous variables. In: I.T. Jolliffe & D.B. Stephenson (Eds.) Forecast verification—a practitioner's guide in atmospheric science, 2nd edition. Chichester: John Wiley & Sons, pp. 97–120.
- Derin, Y., Anagnostou, E., Berne, A., Borga, M., Boudevillain, B., Buytaert, W. et al. (2016) Multiregional satellite precipitation products evaluation over complex terrain. Journal of Hydrometeorology, 17(6), 1817–1836. Available from: https://doi.org/10.1175/JHM-D-15-0197.1
- Dezfuli, A.K., Ichoku, C.M., Huffman, G.J., Mohr, K.I., Selker, J.S., van de Giesen, N. et al. (2017) Validation of IMERG precipitation in Africa. Journal of Hydrometeorology, 18(10), 2817–2825. Available from: https://doi.org/10.1175/JHM-D-17-0139.1
- Doyle, M.E., Saurral, R.I. & Barros, V.R. (2011) Trends in the distributions of aggregated monthly precipitation over the La Plata Basin. International Journal of Climatology, 31(9), 1329–1339. Available from: https://doi.org/10.1002/joc.2429
10.1002/joc.2429 Google Scholar
- Fang, J., Yang, W., Luan, Y., Du, J., Lin, A. & Zhao, L. (2019) Evaluation of the TRMM 3B42 and GPM IMERG products for extreme precipitation analysis over China. Atmospheric Research, 223, 24–38. Available from: https://doi.org/10.1016/j.atmosres.2019.03.001
- Fischer, T., Byerlee, D. & Edmeades, G. (2014) Crop yields and global food security: Will yield increase continue to feed the world? Vol. 22. Canberra, ACT: Australian Centre for International Agricultural Research. 634 pp.
- Gadelha, A.N., Coelho, V.H.R., Xavier, A.C., Barbosa, L.R., Melo, D.C., Xuan, Y. et al. (2019) Grid box-level evaluation of IMERG over Brazil at various space and time scales. Atmospheric Research, 218, 231–244. Available from: https://doi.org/10.1016/j.atmosres.2018.12.001
- Getirana, A., Kirschbaum, D., Mandarino, F., Ottoni, M., Khan, S. & Arsenault, K. (2020) Potential of GPM IMERG precipitation estimates to monitor natural disaster triggers in urban areas: the case of Rio de Janeiro, Brazil. Remote Sensing, 12(24), 4095. Available from: https://doi.org/10.3390/rs12244095
- Guo, H., Chen, S., Bao, A., Behrangi, A., Hong, Y., Ndayisaba, F. et al. (2016) Early assessment of Integrated Multi-satellite Retrievals for Global Precipitation Measurement over China. Atmospheric Research, 176, 121–133. Available from: https://doi.org/10.1016/j.atmosres.2016.02.020
- Gupta, H.V., Kling, H., Yilmaz, K.K. & Martinez, G.F. (2009) Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling. Journal of Hydrology, 377(1–2), 80–91. Available from: https://doi.org/10.1016/j.jhydrol.2009.08.003
- He, Z., Yang, L., Tian, F., Ni, G., Hou, A. & Lu, H. (2017) Intercomparisons of rainfall estimates from TRMM and GPM multisatellite products over the Upper Mekong River basin. Journal of Hydrometeorology, 18(2), 413–430. Available from: https://doi.org/10.1175/JHM-D-16-0198.1
- Hobouchian, M.P., García, S., Barrera, Y., Vila, D. & Salio, P. (2017) Validación de la estimación de precipitación por satélite aplicando la técnica hidroestimador. Meteorologica, 42(1), 19–37.
- Hobouchian, M.P., Salio, P., Vila, D. & Skabar, Y.G. (2012) Validación de estimaciones de precipitación por satélite sobre Sudamérica utilizando una red de observaciones de alta resolución espacial. Paper presented at XI Congreso Argentino de Meteorología, Mendoza.
- Hosseini-Moghari, S.M. & Tang, Q. (2020) Validation of GPM IMERG V05 and V06 precipitation products over Iran. Journal of Hydrometeorology, 21(5), 1011–1037. Available from: https://doi.org/10.1175/JHM-D-19-0269.1
- Hsu, J., Huang, W.R. & Liu, P.Y. (2022) Comprehensive analysis of PERSIANN products in studying the precipitation variations over Luzon. Remote Sensing, 14(22), 5900. Available from: https://doi.org/10.3390/rs14225900
- Hsu, K., Gao, X., Sorooshian, S. & Gupta, H.V. (1997) Precipitation estimation from remotely sensed information using artificial neural networks. Journal of Applied Meteorology and Climatology, 36(9), 1176–1190. Available from: https://doi.org/10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2
- Hsu, K.L., Gupta, H.V., Gao, X. & Sorooshian, S. (1999) Estimation of physical variables from multichannel remotely sensed imagery using a neural network: application to rainfall estimation. Water Resources Research, 35(5), 1605–1618. Available from: https://doi.org/10.1029/1999WR900032
- Hsu, K.L., Hong, Y. & Sorooshian, S. (2007) Rainfall estimation using a cloud patch classification map. Dordrecht: Springer, pp. 329–342. Available from: https://doi.org/10.1007/978-1-4020-5835-6_26
- Hsu, K.L., Sadeghi, M., Nguyen, P., Rahnamay Naeini, M., Braithwaite, D. & Sorooshian, S. (2020) PERSIANN-CCS-CDR: a global precipitation climate data record for hydro-climate studies. AGU Fall Meeting Abstracts, 2020, H020-01.
- Huang, W.R., Chang, Y.H. & Liu, P.Y. (2018) Assessment of IMERG precipitation over Taiwan at multiple timescales. Atmospheric Research, 214, 239–249. Available from: https://doi.org/10.1016/j.atmosres.2018.08.004
- Huang, W.R., Liu, P.Y. & Hsu, J. (2021) Multiple timescale assessment of wet season precipitation estimation over Taiwan using the PERSIANN family products. International Journal of Applied Earth Observation and Geoinformation, 103, 102521. Available from: https://doi.org/10.1016/j.jag.2021.102521
- Huffman, G.J., Bolvin, D.T., Braithwaite, D., Hsu, K.L., Joyce, R.J., Kidd, C. et al. (2020) Integrated multi-satellite retrievals for the global precipitation measurement (GPM) mission (IMERG). Satellite Precipitation Measurement, 1, 343–353. Available from: https://doi.org/10.1007/978-3-030-24568-9_19
10.1007/978-3-030-24568-9_19 Google Scholar
- Huffman, G.J., Stocker, E.F., Bolvin, D.T., Nelkin, E.J. & Tan, J. (2019) GPM IMERG final precipitation L3 half hourly 0.1 degree × 0.1 degree V06. Greenbelt, MD: Goddard Earth Sciences Data and Information Services Center (GES DISC).
- Laing, A.G. & Fritsch, J.M. (2000) The large-scale environments of the global populations of mesoscale convective complexes. Monthly Weather Review, 128(8), 2756–2776. Available from: https://doi.org/10.1175/1520-0493(2000)128<2756:TLSEOT>2.0.CO;2
- Li, Z., Tang, G., Kirstetter, P., Gao, S., Li, J.L., Wen, Y. et al. (2022) Evaluation of GPM IMERG and its constellations in extreme events over the conterminous United States. Journal of Hydrology, 606, 127357. Available from: https://doi.org/10.1016/j.jhydrol.2021.127357
- Liebmann, B., Kiladis, G.N., Vera, C.S., Saulo, A.C. & Carvalho, L.M. (2004) Subseasonal variations of rainfall in South America in the vicinity of the low-level jet east of the Andes and comparison to those in the South Atlantic convergence zone. Journal of Climate, 17(19), 3829–3842. Available from: https://doi.org/10.1175/1520-0442(2004)017<3829:SVORIS>2.0.CO;2
- Liu, J., Duan, Z., Jiang, J. & Zhu, A.-X. (2015) Evaluation of three satellite precipitation products TRMM 3B42, CMORPH, and PERSIANN over a subtropical watershed in China. Advances in Meteorology, 2015, 151239. Available from: https://doi.org/10.1155/2015/151239
- Lovino, M.A., Müller, O., Berbery, E.H. & Müller, G. (2018) How have daily climate extremes changed in the recent past over northeastern Argentina? Global and Planetary Change, 168, 78–97. Available from: https://doi.org/10.1016/j.gloplacha.2018.06.008
- Ma, Q., Li, Y., Feng, H., Yu, Q., Zou, Y., Liu, F. et al. (2021) Performance evaluation and correction of precipitation data using the 20-year IMERG and TMPA precipitation products in diverse subregions of China. Atmospheric Research, 249, 105304. Available from: https://doi.org/10.1016/j.atmosres.2020.105304
- Maghsood, F.F., Hashemi, H., Hosseini, S.H. & Berndtsson, R. (2019) Ground validation of GPM IMERG precipitation products over Iran. Remote Sensing, 12(1), 48. Available from: https://doi.org/10.3390/rs12010048
- Masunaga, H., Schröder, M., Furuzawa, F.A., Kummerow, C., Rustemeier, E. & Schneider, U. (2019) Inter-product biases in global precipitation extremes. Environmental Research Letters, 14(12), 125016. Available from: https://doi.org/10.1088/1748-9326/ab5da9
- Müller, G.V., Lovino, M.A. & Sgroi, L.C. (2021) Observed and projected changes in temperature and precipitation in the core crop region of the humid Pampa, Argentina. Climate, 9(3), 40. Available from: https://doi.org/10.3390/cli9030040
- Nascimento, J.G., Althoff, D., Bazame, H.C., Neale, C.M.U., Duarte, S.N., Ruhoff, A.L. et al. (2021) Evaluating the latest IMERG products in a subtropical climate: the case of Paraná state, Brazil. Remote Sensing, 13, 906. Available from: https://doi.org/10.3390/rs13050906
- Nasrollahi, N., Hsu, K. & Sorooshian, S. (2013) An artificial neural network model to reduce false alarms in satellite precipitation products using MODIS and CloudSat observations. Journal of Hydrometeorology, 14(6), 1872–1883. Available from: https://doi.org/10.1175/JHM-D-12-0172.1
- Nguyen, P., Ombadi, M., Gorooh, V.A., Shearer, E.J., Sadeghi, M., Sorooshian, S. et al. (2020a) Persiann dynamic infrared–rain rate (PDIR-now): A near-real-time, quasi-global satellite precipitation dataset. Journal of Hydrometeorology, 21(12), 2893–2906. Available from: https://doi.org/10.1175/JHM-D-20-0177.1
- Nguyen, P., Ombadi, M., Sorooshian, S., Hsu, K., AghaKouchak, A., Braithwaite, D. et al. (2018) The PERSIANN family of global satellite precipitation data: a review and evaluation of products. Hydrology and Earth System Sciences, 22(11), 5801–5816. Available from: https://doi.org/10.5194/hess-2018-177
- Nguyen, P., Shearer, E.J., Ombadi, M., Gorooh, V.A., Hsu, K., Sorooshian, S. et al. (2020b) PERSIANN Dynamic Infrared–Rain rate model (PDIR) for high-resolution, real-time satellite precipitation estimation. Bulletin of the American Meteorological Society, 101(3), E286–E302. Available from: https://doi.org/10.1175/BAMS-D-19-0118.1
- Palharini, R.S.A., Vila, D.A., Rodrigues, D.T., Quispe, D.P., Palharini, R.C., de Siqueira, R.A. et al. (2020) Assessment of the extreme precipitation by satellite estimates over South America. Remote Sensing, 12(13), 2085. Available from: https://doi.org/10.3390/rs12132085
- Penalba, O.C. & Robledo, F.A. (2009) Spatial and temporal variability of the frequency of extreme daily rainfall regime in the La Plata Basin during the 20th century. Climatic Change, 98(3), 531–550. Available from: https://doi.org/10.1007/s10584-009-9744-6
- Pradhan, R.K., Markonis, Y., Vargas Godoy, M.R., Villalba-Pradas, A., Andreadis, K.M., Nikolopoulos, E.I. et al. (2022) Review of GPM IMERG performance: a global perspective. Remote Sensing of Environment, 268, 112754. Available from: https://doi.org/10.1016/j.rse.2021.112754
- Prigent, C. (2010) Precipitation retrieval from space: an overview. Comptes Rendus Geoscience, 342(4–5), 380–389. Available from: https://doi.org/10.1016/j.crte.2010.01.004
- Rahmawati, N. & Lubczynski, M.W. (2018) Validation of satellite daily rainfall estimates in complex terrain of Bali Island, Indonesia. Theoretical and Applied Climatology, 134, 513–532. Available from: https://doi.org/10.1007/s00704-017-2290-7
- Rasmussen, K.L., Chaplin, M.M., Zuluaga, M.D. & Houze, R.A. (2016) Contribution of extreme convective storms to rainfall in South America. Journal of Hydrometeorology, 17(1), 353–367. Available from: https://doi.org/10.1175/JHM-D-15-0067.1
- Reboita, M.S., Reale, M., da Rocha, R.P., Ambrizzi, T., Gleeson, E., Ruscica, R. et al. (2021) Future changes in the wintertime cyclonic activity over the CORDEX-CORE southern hemisphere domains in a multi-model approach. Climate Dynamics, 57, 1533–1549. Available from: https://doi.org/10.1007/s00382-020-05317-z
- Rodrigues, D.T., Santos e Silva, C.M., dos Reis, J.S., Palharini, R.S.A., Cabral Júnior, J.B., da Silva, H.J.F. et al. (2021) Evaluation of the Integrated Multi-SatellitE Retrievals for the Global Precipitation Measurement (IMERG) product in the São Francisco Basin (Brazil). Water, 13(19), 2714. Available from: https://doi.org/10.3390/w13192714
- Rozante, J.R., Vila, D.A., Barboza Chiquetto, J., Fernandes, A.D.A. & Souza Alvim, D. (2018) Evaluation of TRMM/GPM blended daily products over Brazil. Remote Sensing, 10(6), 882. Available from: https://doi.org/10.3390/rs10060882
- Sadeghi, M., Lee, J., Nguyen, P., Hsu, K.L., Sorooshian, S. & Braithwaite, D. (2019) Precipitation estimation from remotely sensed information using artificial neural networks-cloud classification system-climate data record (PERSIANN-CCS-CDR). AGU Fall Meeting Abstracts, 2019, H13P-1964.
- Sadeghi, M., Nguyen, P., Naeini, M., Hsu, K., Braithwaite, D. & Sorooshian, S. (2021) PERSIANN-CCS-CDR, a 3-hourly 0.04° global precipitation climate data record for heavy precipitation studies. Scientific Data, 8(1), 1–11. Available from: https://doi.org/10.1038/s41597-021-00940-9
- Salehi, H., Sadeghi, M., Golian, S., Nguyen, P., Murphy, C. & Sorooshian, S. (2022) The application of PERSIANN family datasets for hydrological modeling. Remote Sensing, 14(15), 3675. Available from: https://doi.org/10.3390/rs14153675
- Salio, P., Hobouchian, M.P., García Skabar, Y. & Vila, D. (2015) Evaluation of high-resolution satellite precipitation estimates over southern South America using a dense rain gauge network. Atmospheric Research, 163, 146–161. Available from: https://doi.org/10.1016/j.atmosres.2014.11.017
- Silva Lelis, L.C., Duarte Bosquilia, R.W. & Duarte, S.N. (2018) Assessment of precipitation data generated by GPM and TRMM satellites. Revista Brasileira de Meteorologia, 33, 153–163. Available from: https://doi.org/10.1590/0102-7786331004
10.1590/0102-7786331004 Google Scholar
- Silva, W.M. & Simões, S.J.C. (2014) Spatial intra-annual variability of precipitation based on geostatistics. A case study for the Paraıba do Sul Basin, southeastern Brazil. International Journal of Geosciences, 5, 408–417. Available from: https://doi.org/10.4236/ijg.2014.54039
10.4236/ijg.2014.54039 Google Scholar
- Tian, W., Cao, X. & Peng, K. (2022) Technology for Position correction of satellite precipitation and contributions to error reduction—a case of the “720” rainstorm in Henan, China. Sensors, 22, 5583. Available from: https://doi.org/10.3390/s22155583
- Varuolo-Clarke, A.M., Smerdon, J.E., Williams, A.P. & Seager, R. (2021) Gross discrepancies between observed and simulated twentieth-to-twenty-first-century precipitation trends in southeastern South America. Journal of Climate, 34(15), 6441–6457. Available from: https://doi.org/10.1175/JCLI-D-20-0746.1
- Veiga, H., Herrera, N., Skansi, M.M. & Podestá, G. (2015) Descripción de controles de calidad de datos climáticos diarios implementados por el Centro Regional del Clima para el Sur de América del Sur. Serie reportes técnicos. Centro Regional del Clima del Clima para el Sur de América del Sur. Reporte técnico CRC-SAS-2014-001. https://www.crc-sas.org/es/pdf/reporte_tecnico_CRC-SAS-2014-001.pdf
- Vera, C., Vigliarolo, P.K. & Berbery, E.H. (2002) Cold season synoptic scale waves over subtropical South America. Monthly Weather Review, 130, 684–699. Available from: https://doi.org/10.1175/1520-0493(2002)130<0684:CSSSWO>2.0.CO;2
- Vila, D.A., De Goncalves, L.G.G., Toll, D.L. & Rozante, J.R. (2009) Statistical evaluation of combined daily gauge observations and rainfall satellite estimates over continental South America. Journal of Hydrometeorology, 10(2), 533–543. Available from: https://doi.org/10.1175/2008JHM1048.1
- Wang, C., Tang, G. & Gentine, P. (2021) PrecipGAN: merging microwave and infrared data for satellite precipitation estimation using generative adversarial network. Geophysical Research Letters, 48(5), e2020GL092032. Available from: https://doi.org/10.1029/2020GL092032
- Wang, H. & Yong, B. (2020) Quasi-Global evaluation of IMERG and GSMaP precipitation products over land using gauge observations. Water, 12(1), 243. Available from: https://doi.org/10.3390/w12010243
- Xu, R., Tian, F., Yang, L., Hu, H., Lu, H. & Hou, A. (2017) Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over southern Tibetan Plateau based on a high-density rain gauge network. Journal of Geophysical Research: Atmospheres, 122(2), 910–924. Available from: https://doi.org/10.1002/2016JD025418
- Yang, Y. & Luo, Y. (2014) Evaluating the performance of remote sensing precipitation products CMORPH, PERSIANN, and TMPA, in the arid region of northwest China. Theoretical and Applied Climatology, 118, 429–445. Available from: https://doi.org/10.1007/s00704-013-1072-0
- Zhou, J. & Lau, K. (1998) Does a monsoon climate exist over South America? Journal of Climate, 11, 1020–1040. Available from: https://doi.org/10.1175/1520-0442(1998)011<1020:DAMCEO>2.0.CO;2
- Zipser, E.J., Cecil, D.J., Liu, C., Nesbitt, S.W. & Yorty, D.P. (2006) Where are the most intense thunderstorms on earth? Bulletin of the American Meteorological Society, 87(8), 1057–1072. Available from: https://doi.org/10.1175/BAMS-87-8-1057