Journal list menu
Sensitivity of a continental night-time stratocumulus-topped boundary layer to varying environmental conditions
Corresponding Author
W.-Y. H. Leung
Department of Meteorology, Stockholm University, SE-106 91, Stockholm, Sweden
Correspondence to: W.-Y. H. Leung, Department of Meteorology, Stockholm University, SE-106 91, Stockholm, Sweden. E-mail: [email protected]Search for more papers by this authorJ. Savre
Department of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, UK
Search for more papers by this authorF. A.-M. Bender
Department of Meteorology, Stockholm University, SE-106 91, Stockholm, Sweden
Search for more papers by this authorM. Komppula
Finnish Meteorological Institute, P.O. Box 1627 FI-70211 Kuopio Finland
Search for more papers by this authorH. Portin
Helsinki Region Environmental Services (HSY), P.O. Box 100 FI-00066 HSY, Finland
Search for more papers by this authorS. Romakkaniemi
Finnish Meteorological Institute, P.O. Box 1627 FI-70211 Kuopio Finland
Search for more papers by this authorJ. Sedlar
Remote Sensing Division, Research Department, Swedish Meteorological and Hydrological Institute (SMHI), 60 176 Norrköping, Sweden
Search for more papers by this authorK. Noone
Department of Applied Environmental Science, Stockholm University, SE-106 91, Stockholm, Sweden
Search for more papers by this authorA. M. L. Ekman
Department of Meteorology, Stockholm University, SE-106 91, Stockholm, Sweden
Search for more papers by this authorCorresponding Author
W.-Y. H. Leung
Department of Meteorology, Stockholm University, SE-106 91, Stockholm, Sweden
Correspondence to: W.-Y. H. Leung, Department of Meteorology, Stockholm University, SE-106 91, Stockholm, Sweden. E-mail: [email protected]Search for more papers by this authorJ. Savre
Department of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, UK
Search for more papers by this authorF. A.-M. Bender
Department of Meteorology, Stockholm University, SE-106 91, Stockholm, Sweden
Search for more papers by this authorM. Komppula
Finnish Meteorological Institute, P.O. Box 1627 FI-70211 Kuopio Finland
Search for more papers by this authorH. Portin
Helsinki Region Environmental Services (HSY), P.O. Box 100 FI-00066 HSY, Finland
Search for more papers by this authorS. Romakkaniemi
Finnish Meteorological Institute, P.O. Box 1627 FI-70211 Kuopio Finland
Search for more papers by this authorJ. Sedlar
Remote Sensing Division, Research Department, Swedish Meteorological and Hydrological Institute (SMHI), 60 176 Norrköping, Sweden
Search for more papers by this authorK. Noone
Department of Applied Environmental Science, Stockholm University, SE-106 91, Stockholm, Sweden
Search for more papers by this authorA. M. L. Ekman
Department of Meteorology, Stockholm University, SE-106 91, Stockholm, Sweden
Search for more papers by this authorAbstract
Large-eddy simulation of a nocturnal stratocumulus-topped boundary layer in a continental midlatitude environment has been performed to examine the sensitivity of the cloud to a number of different environmental parameters. The simulations showed that the stratocumulus cloud was strongly affected by the presence of an overlying free tropospheric cirrus cloud (FTC), in agreement with previous studies of marine nighttime stratocumulus. When introducing an FTC with an optical thickness of 2, stratocumulus liquid water path decreased by 30%. Enhancing the optical thickness of the FTC to 8 further decreased the liquid water path by almost 10%. The presence of an FTC decreased the cloud-top radiative cooling which decreased the turbulent mixing in the boundary layer, so that the liquid water content and cloud depth were reduced. The sensitivity of the stratocumulus cloud to an overlying FTC was found to be affected by the moisture content in the free troposphere. When a clear positive or negative moisture gradient above the inversion was imposed, and an overlying FTC with an optical thickness of 8 was introduced, the stratocumulus cloud LWP decreased by more than 40%. Furthermore, the effect of changes in free tropospheric moisture content and an overlying FTC on the stratocumulus cloud properties was found to be nonlinear; the combined response was in general weaker than the two responses added together. The modeled response to changes in cloud condensation nuclei (CCN) concentrations was found to be non-significant, unless the CCN concentrations were so low that drizzle was induced (∼50 cm−3).
References
- Ackerman AS, van Zanten MC, Stevens B, Savic-Jovcic V, Bretherton CS, Chlond A, Golaz JC, Jiang H, Khairoutdinov M, Krueger SK, Lewellen DC, Lock A, Moeng CH, Nakamura K, Petters MD, Snider JR, Weinbrecht S, Zulauf M. 2009. Large-eddy simulations of a drizzling, stratocumulus-topped marine boundary layer. Mon. Weather Rev. 137: 1083–1110, doi: 10.1175/2008MWR2582.1.
- Austin RT, Heymsfield AJ, Stephens GL. 2009. Retrieval of ice cloud microphysical parameters using the CloudSat millimeter-wave radar and temperature. J. Geophys. Res. 114, doi: 10.1029/2008JD010049.
- Bony S, Colman R, Kattsov VM, Allan RP, Bretherton CS, Dufresne JL, Hall A, Hallegatte S, Holland MM, Ingram W, Randall DA, Soden BJ, Tselioudis G, Webb MJ. 2006. How well do we understand and evaluate climate change feedback processes?. J. Clim. 19: 3445–3482, doi: 10.1175/JCLI3819.1.
- Boucher O, Randall D, Artaxo P, Bretherton C, Feingold G, Forster P, Kerminen VM, Kondo Y, Liao H, Lohmann U, Rasch P, Satheesh S, Sherwood S, Stevens B, Zhang X. 2013. Clouds and aerosols. In Climate Change 2013: The Physical Science Basis. Contribution ofWorking Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press: Cambridge, UK and New York, NY.
- Bretherton CS, Wyant MC. 1997. Moisture transport, lower-tropospheric stability, and decoupling of cloud-topped boundary layers. J. Atmos. Sci. 54: 148–167, doi: 10.1175/1520-0469(1997)054<0148:mtltsa>2.0.CO;2.
- Bretherton CS, Blossey PN, Uchida J. 2007. Cloud droplet sedimentation, entrainment efficiency, and subtropical stratocumulus albedo. Geophys. Res. Lett. 34: L03813, doi: 10.1029/2006GL027648.
- Bretherton CS, Blossey PN, Jones CR. 2013. Mechanisms of marine low cloud sensitivity to idealized climate perturbations: A single-LES exploration extending the CGILS cases. J. Adv. Model. Earth Syst. 5: 316–337, doi: 10.1002/jame.20019.
- Chen C, Cotton WR. 1987. The physics of the marine stratocumulus-capped mixed layer. J. Atmos. Sci. 44: 2951–2977, doi: 10.1175/1520-0469(1987)044<2951:TPOTMS>2.0.CO;2.
- Chen YC, Xue L, Lebo ZJ, Wang H, Rasmussen RM, Seinfeld JH. 2011. A comprehensive numerical study of aerosol–cloud–precipitation interactions in marine stratocumulus. Atmos. Chem. Phys. 11: 9749–9769, doi: 10.5194/acp-11-9749-2011.
- Christensen MW, Carrió GG, Stephens GL, Cotton WR. 2013. Radiative impacts of free-tropospheric clouds on the properties of marine stratocumulus. J. Atmos. Sci. 70: 3102–3118, doi: 10.1175/JAS-D-12-0287.1.
- Deardorff J. 1980. Stratocumulus-capped mixed layers derived from a three-dimensional model. Boundary-Layer Meteorol. 18: 495–527, doi: 10.1007/BF00119502.
- Driedonks AGM, Duynkerke PG. 1989. Current problems in the stratocumulus-topped atmospheric boundary layer. Boundary-Layer Meteorol. 46: 275–303, doi: 10.1007/BF00120843.
- Durran D. 2010. Numerical Methods for Fluid Dynamics, Texts in Applied Mathematics ( 2nd edn). Springer: Berlin and Heidelberg, Germany.
- Duynkerke PG, Zhang HQ, Jonker PJ. 1995. Microphysical and turbulent structure of nocturnal stratocumulus as observed during ASTEX. J. Atmos. Sci. 52: 2763–2777, doi: 10.1175/1520-0469(1995)052<2763:MATSON>2.0.CO;2.
- Fang M, Albrecht BA, Ghate VP, Kollias P. 2014. Turbulence in continental stratocumulus, partI: External forcings and turbulence structures. Boundary-Layer Meteorol. 150: 341–360, doi: 10.1007/s10546-013-9873-3.
- Feingold G, Frisch AS, Stevens B, Cotton WR. 1999. On the relationship among cloud turbulence, droplet formation and drizzle as viewed by doppler radar, microwave radiometer and lidar. J. Geophys. Res.: Atmos. 104: 22195–22203, doi: 10.1029/1999JD900482.
- Field PR, Wood R. 2007. Precipitation and cloud structure in midlatitude cyclones. J. Clim. 20: 233–254, doi: 10.1175/JCLI3998.1.
- Fu Q, Liou KN. 1992. On the correlated k-distribution method for radiative transfer in non-homogeneous atmospheres. J. Atmos. Sci. 49: 2139–2156, doi: 10.1175/1520-0469(1992)049<2139:OTCDMF>2.0.CO;2.
- Ghan SJ, Smith SJ, Wang M, Zhang K, Pringle K, Carslaw K, Pierce J, Bauer S, Adams P. 2013. A simple model of global aerosol indirect effects. J. Geophys. Res. 118: 6688–6707, doi: 10.1002/jgrd.50567.
- Ghate VP, Miller MA, Albrecht BA, Fairall CW. 2014. Thermodynamic and radiative structure of stratocumulus-topped boundary layers. J. Atmos. Sci. 72: 430–451, doi: 10.1175/JAS-D-13-0313.1.
- Glantz P, Noone KJ, Osborne SR. 2003. Scavenging efficiencies of aerosol particles in marine stratocumulus and cumulus clouds. Q. J. R. Meteorol. Soc. 129: 1329–1350, doi: 10.1256/qj.02.73.
- Hahn CJ, Warren SG. 2007. ‘A gridded climatology of clouds over land (1971–1996) and ocean (1954–1997) worldwide’. Report ORNL/CDIAC-153 NDP-026E. US Department of Energy, http://cdiac.ornl.gov/ftp/ndp026e/ndp026e.pdf (accessed 4 Aug 2016).
- Hill AA, Feingold G, Jiang H. 2009. The influence of entrainment and mixing assumption on aerosol–cloud interactions in marine stratocumulus. J. Atmos. Sci. 66: 1450–1464, doi: 10.1175/2008JAS2909.1.
- Hogan RJ, Grant ALM, Illingworth AJ, Pearson GN, O'Connor EJ. 2009. Vertical velocity variance and skewness in clear and cloud-topped boundary layers as revealed by Doppler lidar. Q. J. R. Meteorol. Soc. 135: 635–643, doi: 10.1002/qj.413.
- Im E, Wu C, Durden S. 2005. ‘Cloud profiling radar for the CloudSat mission’. In IEEE International Radar Conference, 2005. Arlington, VA, pp. 483–486, doi: 10.1109/RADAR.2005.1435874.
- Khvorostyanov VI, Curry JA. 2006. Aerosol size spectra and CCN activity spectra: Reconciling the lognormal, algebraic, and power laws. J. Geophys. Res. 111: 2156–2202, doi: 10.1029/2005JD006532.
- King MD, Kaufman YJ, Menzel W, Tanre D. 1992. Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS). IEEE Trans. Geosci. Remote Sens. 30: 2–27, doi: 10.1109/36.124212.
- Klein SA, Hartmann DL. 1993. The seasonal cycle of low stratiform clouds. J. Clim. 6: 1587–1606, doi: 10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2.
- Klemp JB, Durran DR. 1983. An upper boundary condition permitting internal gravity wave radiation in numerical mesoscale models. Mon. Weather Rev. 111: 430–444, doi: 10.1175/1520-0493(1983)111<0430:AUBCPI>2.0.CO;2.
- Leskinen A, Portin H, Komppula M, Miettinen P, Arola A, Lihavainen H, Hatakka J, Laaksonen A, Lehtinen KE. 2009. Overview of the research activities and results at Puijo semi-urban measurement station. Boreal Environ. Res. 14: 576–590.
- Lewellen DC, Lewellen WS. 1998. Large-eddy boundary-layer entrainment. J. Atmos. Sci. 55: 2645–2665, doi: 10.1175/1520-0469(1998)055<2645:LEBLE>2.0.CO;2.
- Lilly DK. 1968. Models of cloud-topped mixed layers under a strong inversion. Q. J. R. Meteorol. Soc. 94: 292–309, doi: 10.1002/qj.49709440106.
- Lilly DK. 1992. A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A: Fluid Dyn. 4: 633–635, doi: 10.1063/1.858280.
- Lin JL, Qian T, Shinoda T. 2014. Stratocumulus clouds in southeastern Pacific simulated by eight CMIP5–CFMIP global climate models. J. Clim. 27: 3000–3022, doi: 10.1175/JCLI-D-13-00376.1.
- Lu ML, Seinfeld JH. 2005. Study of the aerosol indirect effect by large-eddy simulation of marine stratocumulus. J. Atmos. Sci. 62: 3909–3932, doi: 10.1175/JAS3584.1.
- Marchand R, Mace GG, Ackerman T, Stephens G. 2008. Hydrometeor detection using CloudSat—an earth-orbiting 94 GHz cloud radar. J. Atmos. Oceanic Technol. 25: 519–533, doi: 10.1175/2007JTECHA1006.1.
- Mechem DB, Kogan YL, Schultz DM. 2010. Large-eddy observation of post-cold-frontal continental stratocumulus. J. Atmos. Sci. 67: 3368–3383, doi: 10.1175/2010JAS3389.1.
- Moeng CH, Shen S, Randall DA. 1992. Physical processes within the nocturnal stratus-topped boundary layer. J. Atmos. Sci. 49: 2384–2401, doi: 10.1175/1520-0469(1992)049<2384:PPWTNS>2.0.CO;2.
- Moyer KA, Young GS. 1991. Observations of vertical velocity skewness within the marine stratocumulus-topped boundary layer. J. Atmos. Sci. 48: 403–410, doi: 10.1175/1520-0469(1991)0480403:oovvsw2.0.CO;2.
- Nicholls S, Turton JD. 1986. An observational study of the structure of stratiform cloud sheets: PartII. Entrainment. Q. J. R. Meteorol. Soc. 112: 461–480, doi: 10.1002/qj.49711247210.
- Petters J, Jiang H, Feingold G, Rossiter D, Khelif D, Sloan L, Chuang P. 2013. A comparative study of the response of modeled non-drizzling stratocumulus to meteorological and aerosol perturbations. Atmos. Chem. Phys. 13: 2507–2529, doi: 10.5194/acp-13-2507-2013.
- Portin HJ, Komppula M, Leskinen AP, Romakkaniemi S, Laaksonen A, Lehtinen KE. 2009. Observations of aerosol–cloud interactions at the Puijo semi-urban measurement station. Boreal Environ. Res. 14: 641–653.
- deRoode SR, Duynkerke PG. 1997. Observed Lagrangian transition of stratocumulus into cumulus during ASTEX: Mean state and turbulence structure. J. Atmos. Sci. 54: 2157–2173, doi: 10.1175/1520-0469(1997)054<2157:OLTOSI>2.0.CO;2.
- Savre J, Ekman AM, Svensson G. 2014. Technical note: Introduction to Mimica, a large-eddy simulation solver for cloudy planetary boundary layers. J. Adv. Model. Earth Syst. 6: 630–649, doi: 10.1002/2013MS000292.
- Schubert WH, Wakefield JS, Steiner EJ, Cox SK. 1979. Marine stratocumulus convection. PartI: Governing equations and horizontally homogeneous solutions. J. Atmos. Sci. 36: 1286–1307, doi: 10.1175/1520-0469(1979)036<1286:MSCPIG>2.0.CO;2.
- Seifert A, Beheng KD. 2001. A double-moment parameterization for simulating autoconversion, accretion and selfcollection. Atmos. Res. 59: 265–281, doi: 10.1016/S0169-8095(01)00126-0.
- Stephens GL, Vane DG, Boain RJ, Mace GG, Sassen K, Wang Z, Illingworth AJ, O'Connor EJ, Rossow WB, Durden SL, Miller SD, Austin RT, Benedetti A, Mitrescu C. 2002. The CloudSat mission and the A-train: A new dimension of space-based observations of clouds and precipitation. Bull. Am. Meteorol. Soc. 83: 1771–1790, doi: 10.1175/BAMS-83-12-1771.
- Stevens B. 2002. Entrainment in stratocumulus-topped mixed layers. Q. J. R. Meteorol. Soc. 128: 2663–2690, doi: 10.1256/qj.01.202.
- Stevens B, Lenschow DH, Vali G, Gerber H, Bandy A, Blomquist B, Brenguier JL, Bretherton CS, Burnet F, Campos T, Chai S, Faloona I, Friesen D, Haimov S, Laursen K, Lilly DK, Loehrer SM, Malinowski SP, Morley B, Petters MD, Rogers DC, Russell L, Savic-Jovcic V, Snider JR, Straub D, Szumowski MJ, Takagi H, Thornton DC, Tschudi M, Twohy C, Wetzel M, van Zanten MC. 2003. Dynamics and chemistry of marine stratocumulus—DYCOMS-II. Bull. Am. Meteorol. Soc. 84: 579–593, doi: 10.1175/BAMS-84-5-579.
- Tanelli S, Durden S, Im E, Pak K, Reinke D, Partain P, Haynes J, Marchand R. 2008. CloudSat's cloud profiling radar after two years in orbit: Performance, calibration, and processing. IEEE Trans. Geosci. Remote Sens. 46: 3560–3573, doi: 10.1109/TGRS.2008.2002030.
- Wang Z, Sassen K. 2007. Level 2 Cloud Scenario Classification Product Process Description and Interface Control Document. Cooperative Institute for Research in the Atmosphere, Colorado State University: Fort Collins, CO.
- Webb MJ, Senior CA, Sexton DMH, Ingram WJ, Williams KD, Ringer MA, McAvaney BJ, Colman R, Soden BJ, Gudgel R, Knutson T, Emori S, Ogura T, Tsushima Y, Andronova N, Li B, Musat I, Bony S, Taylor KE. 2006. On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles. Clim. Dyn. 27: 17–38, doi: 10.1007/s00382-006-0111-2.
- Webb MJ, Lambert FH, Gregory JM. 2013. Origins of differences in climate sensitivity, forcing and feedback in climate models. Clim. Dyn. 40: 677–707, doi: 10.1007/s00382-012-1336-x.
- Williams PD. 2010. The raw filter: An improvement to the Robert–Asselin filter in semi-implicit integrations. Mon. Weather Rev. 139: 1996–2007, doi: 10.1175/2010MWR3601.1.
- Winker DM, Vaughan MA, Omar A, Hu Y, Powell KA, Liu Z, Hunt WH, Young SA. 2009. Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Oceanic Technol. 26: 2310–2323, doi: 10.1175/2009JTECHA1281.1.
- Wood R. 2005. Drizzle in stratiform boundary-layer clouds. PartII: Microphysical aspects. J. Atmos. Sci. 62: 3034–3050, doi: 10.1175/JAS3530.1.
- Wood R. 2012. Stratocumulus clouds. Mon. Weather Rev. 140: 2373–2423, doi: 10.1175/MWR-D-11-00121.1.
- Zelinka MD, Klein SA, Hartmann DL. 2011. Computing and partitioning cloud feedbacks using cloud property histograms. PartII: Attribution to changes in cloud amount, altitude, and optical depth. J. Clim. 25: 3736–3754, doi: 10.1175/JCLI-D-11-00249.1.
- Zelinka MD, Klein SA, Taylor KE, Andrews T, Webb MJ, Gregory JM, Forster PM. 2013. Contributions of different cloud types to feedbacks and rapid adjustments in CMIP5. J. Clim. 26: 5007–5027, doi: 10.1175/JCLI-D-12-00555.1.