An asymmetric relationship between Tibetan Plateau surface temperature regimes and oceanic–atmospheric circulations
Thabo Michael Bafitlhile
Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
University of Chinese Academy of Sciences, Beijing, China
Contribution: Methodology, Investigation, Formal analysis, Data curation, Writing - original draft, Writing - review & editing, Validation
Search for more papers by this authorCorresponding Author
Yuanbo Liu
Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
Correspondence
Yuanbo Liu, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
Email: [email protected]
Contribution: Funding acquisition, Supervision, Conceptualization
Search for more papers by this authorThabo Michael Bafitlhile
Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
University of Chinese Academy of Sciences, Beijing, China
Contribution: Methodology, Investigation, Formal analysis, Data curation, Writing - original draft, Writing - review & editing, Validation
Search for more papers by this authorCorresponding Author
Yuanbo Liu
Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
Correspondence
Yuanbo Liu, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
Email: [email protected]
Contribution: Funding acquisition, Supervision, Conceptualization
Search for more papers by this authorAbstract
As a high-altitude region, the Tibetan Plateau (TP) is sensitive to climate change. Since the 1960s, the TP has experienced significant spatial-variant warming, vital to changing the region's terrestrial ecosystem. To understand surface air temperature (SAT) regimes over the TP, we investigated their link with teleconnections using observational and reanalysis datasets from 1982 to 2019. We employed wavelet analysis, empirical orthogonal teleconnection (EOT), partial regression, canonical correlation analysis and t test. Our results indicate an asymmetrical connection between teleconnections and SAT, with Atlantic Multidecadal Oscillation (AMO) predominant over the northern TP. In contrast, the El Niño–Southern Oscillation (ENSO) is more prevalent in the southern part. The spatial variance was potentially related to windspeed, total cloud cover (TCC), net longwave radiation (NLWR), net shortwave radiation (NSWR), cloud-forcing net longwave flux (CF-NLWF) and cloud-forcing net shortwave flux (CF-NLWF) anomalies. ENSO and Pacific Decadal Oscillation (PDO) modulate cloud cover variation in the southern TP, mainly the southwest, via the monsoon and subtropical westerlies. In the north, cloud cover variation is related to the moisture transported by the AMO-induced prevailing westerlies. The study examined the complex interplay between teleconnections, SAT and cloud radiative forcing by examining the cloud cover and radiation balance relationship. These findings contribute to understanding climate change impacts on the TP, informing climate projections and guiding adaptation strategies by elucidating the relationship between TP temperature variation and oceanic–atmospheric oscillation patterns.
Open Research
DATA AVAILABILITY STATEMENT
Derived data supporting the findings of this study are available from public domain resources mentioned in section 2.1. NCEP-NCAR reanalysis: https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html#. Temperature at the Middle Troposphere (TMT): https://www.remss.com. Reanalysis of 2m air temperature: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=form. Berkeley Earth Surface Temperature: http://berkeleyearth.org/data/. Niño3.4: https://psl.noaa.gov/gcos_wgsp/Timeseries/Nino34/. SOI: https://psl.noaa.gov/gcos_wgsp/Timeseries/SOI/. IOD: https://ds.data.jma.go.jp/tcc/tcc/products/elnino/index/iod_index.html. AMO: https://psl.noaa.gov/gcos_wgsp/Timeseries/AMO/. NAO: https://psl.noaa.gov/gcos_wgsp/Timeseries/NAO/. Chinese Meteorological Administration: http://www.nmic.cn/data/cdcindex/cid/6d1b5efbdcbf9a58.html.
Supporting Information
Filename | Description |
---|---|
joc8179-sup-0001-supinfo.docxWord 2007 document , 2.5 MB | Data S1. Supporting Information. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Abe, M., Hori, M., Yasunari, T. & Kitoh, A. (2013) Effects of the Tibetan Plateau on the onset of the summer monsoon in South Asia: the role of the air-sea interaction. Journal of Geophysical Research, 118(4), 1760–1776. Available from: https://doi.org/10.1002/jgrd.50210
- Anderson, T.R. & Lucas, M.I. (2018) Upwelling ecosystems. In: Encyclopedia of ecology. New York, NY: Elsevier Science, pp. 700–710. Available from: https://doi.org/10.1016/B978-0-444-63768-0.00363-2
- Anderson, T.W. (1992) Introduction to Hotelling (1936) relations between two sets of variates. In: Breakthroughs in statistics,. New York, NY: Springer, pp. 151–161. Available from: https://doi.org/10.1007/978-1-4612-4380-9_13
- Aretxabaleta, A.L., Smith, K.W. & Kalra, T.S. (2017) Regime changes in global sea surface salinity trend. Journal of Marine Science and Engineering, 5(4), 57. Available from: https://doi.org/10.3390/JMSE5040057
- Bafitlhile, T.M. & Liu, Y. (2022) Temperature contributes more than precipitation to the greening of the Tibetan Plateau during 1982–2019. Theoretical and Applied Climatology, 147(3–4), 1471–1488. Available from: https://doi.org/10.1007/s00704-021-03882-9
- Bao, Y., Brauning, A. & Yafeng, S. (2003) Late Holocene temperature fluctuations on the Tibetan Plateau. Quaternary Science Reviews, 22(21–22), 2335–2344. Available from: https://doi.org/10.1016/S0277-3791(03)00132-X
- Bjerknes, J.A.B. (1968) Atmospheric teleconnections from the Equatorial Pacific. Monthly Weather Review, 97, 163–172.
- Bokuchava, D.D. & Semenov, V.A. (2021) Mechanisms of the early 20th century warming in the Arctic. Earth-Science Reviews, 222, 103820. Available from: https://doi.org/10.1016/J.EARSCIREV.2021.103820
- Bothe, O., Fraedrich, K. & Zhu, X. (2010) The large-scale circulations and summer drought and wetness on the Tibetan plateau. International Journal of Climatology, 30(6), 844–855. Available from: https://doi.org/10.1002/joc.1946
- Bravo, A.G. & Sarker, S. (2022) Fundamentals of climatology for engineers: lecture note. Eng, 3(4), 573–595.
- Bretherton, C.S., Smith, C. & Wallace, J.M. (1992) An intercomparison of methods for finding coupled patterns in climate data. Journal of Climate, 5(6), 541–560.
- Cai, H., Yang, Y. & Chen, Q. (2022) Distribution characteristics of cloud types and cloud phases over China and their relationship with cloud temperature. Remote Sensing, 14(21), 5601. Available from: https://doi.org/10.3390/rs14215601
- Chang, P. & Zebiak, S.E. (2015) Tropical meteorology & climate: El Niño and the Southern Oscillation: theory. In: Encyclopedia of atmospheric sciences, 2nd edition. Oxford: Academic Press, Elsevier, pp. 97–101. Available from: https://doi.org/10.1016/B978-0-12-382225-3.00149-3
- Chen, B. & Liu, X. (2005) Seasonal migration of cirrus clouds over the Asian monsoon regions and the Tibetan Plateau measured from MODIS/Terra. Geophysical Research Letters, 32(1), L01804.
- Chen, H., Zhu, Q., Peng, C., Wu, N., Wang, Y., Fang, X. et al. (2013) The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Global Change Biology, 19(10), 2940–2955. Available from: https://doi.org/10.1111/gcb.12277
- Chen, R. & Lu, R. (2015) Comparisons of the circulation anomalies associated with extreme heat in different regions of eastern China. Journal of Climate, 28(14), 5830–5844. Available from: https://doi.org/10.1175/JCLI-D-14-00818.1
- Chen, T., Rossow, W.B. & Zhang, Y. (2000) Radiative effects of cloud-type variations. Journal of Climate, 13(1), 264–286. Available from: https://doi.org/10.1175/1520-0442(2000)013<0264:REOCTV>2.0.CO;2
- Chiang, J.C.H., Wu, C.H., Kong, W. & Battisti, D. (2019) Origins of East Asian summer monsoon seasonality. Journal of Climate, 33, 7945–7965.
- Chou, C. (2003) Land-sea heating contrast in an idealized Asian summer monsoon. Climate Dynamics, 21(1), 11–25.
- Cohen, N.Y. & Boos, W.R. (2016) Modulation of subtropical stratospheric gravity waves by equatorial rainfall. Geophysical Research Letters, 43(1), 466–471.
- Cook, B.I., Smerdon, J.E., Seager, R. & Coats, S. (2014) Global warming and 21st century drying. Climate Dynamics, 43(9–10), 2607–2627.
- Dai, A. (2011) Drought under global warming: a review. Wiley Interdisciplinary Reviews: Climate Change, 2(1), 45–65.
- Ding, Z., Wang, Y. & Lu, R. (2018) An analysis of changes in temperature extremes in the Three River Headwaters region of the Tibetan Plateau during 1961–2016. Atmospheric Research, 209, 103–114. Available from: https://doi.org/10.1016/J.ATMOSRES.2018.04.003
- Draxler, R.R. & Hess, G.D. (1997) Description of the HYSPLIT4 modeling system. Silver Spring, MD: NOAA. Technical memorandum ERL ARL-224.
- Du, Q., Zhang, M., Wang, S., Che, C., Ma, R. & Ma, Z. (2019) Changes in air temperature over China in response to the recent global warming hiatus. Journal of Geographical Sciences, 29(4), 496–516.
- Duan, A. & Wu, G. (2008) Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades Part 1: observations. Journal of Climate, 21(13), 3149–3164.
- Duan, A. & Xiao, Z. (2015) Does the climate warming hiatus exist over the Tibetan Plateau? Scientific Reports, 5(1), 1–9.
- Fan, Y., Li, G. & Lu, H. (2015) Impacts of abnormal heating of Tibetan Plateau on Rossby wave activity and hazards related to snow and ice in South China. Advances in Meteorology, 2015, 878473. Available from: https://doi.org/10.1155/2015/878473
- Feng, S. & Hu, Q. (2008) How the North Atlantic Multidecadal Oscillation may have influenced the Indian summer monsoon during the past two millennia. Geophysical Research Letters, 35(1), L01707. Available from: https://doi.org/10.1029/2007GL032484
- Gao, J., Risi, C., Masson-Delmotte, V., He, Y. & Xu, B. (2016) Southern Tibetan Plateau ice core δ18O reflects abrupt shifts in atmospheric circulation in the late 1970s. Climate Dynamics, 46(1–2), 291–302.
- Gao, K., Duan, A. & Chen, D. (2021) Interdecadal summer warming of the Tibetan Plateau potentially regulated by a sea surface temperature anomaly in the Labrador Sea. International Journal of Climatology, 41(S1), E2633–E2643.
- Gardiner, B.G. (1987) Solar radiation transmitted to the ground through cloud in relation to surface albedo. Journal of Geophysical Research: Atmospheres, 92(D4), 4010–4018.
- Garrett, T.J. & Zhao, C. (2006) Increased Arctic cloud longwave emissivity associated with pollution from mid-latitudes. Nature, 440(7085), 787–789.
- Gershunov, A. & Barnett, T.P. (1998) Interdecadal modulation of ENSO teleconnections. Bulletin of the American Meteorological Society, 79(12), 2715–2726.
- Gou, X., Deng, Y., Chen, F., Yang, M., Gao, L., Nesje, A. et al. (2014) Precipitation variations and possible forcing factors on the northeastern Tibetan Plateau during the last millennium. Quaternary Research, 81(3), 508–512.
- Gray, S.T., Graumlich, L.J., Betancourt, J.L. & Pederson, G.T. (2004) A tree-ring based reconstruction of the Atlantic Multidecadal Oscillation since 1567 A.D. Geophysical Research Letters, 31(12), L12205.
- Guan, Y., Lu, H., Jiang, Y., Tian, P., Qiu, L., Pellikka, P. et al. (2021) Changes in global climate heterogeneity under the 21st century global warming. Ecological Indicators, 130, 108075. Available from: https://doi.org/10.1016/j.ecolind.2021.108075
- Hansen, J., Sato, M., Ruedy, R., Lo, K., Lea, D.W. & Medina-Elizade, M. (2006) Global temperature change. Proceedings of the National Academy of Sciences of the United States of America, 103(39), 14288–14293.
- Hastenrath, S. (2015) Tropical meteorology and climate: tropical climates. In: Encyclopedia of atmospheric sciences, 2nd edition. Oxford: Academic Press, Elsevier, pp. 170–176. Available from: https://doi.org/10.1016/B978-0-12-382225-3.00416-3
- He, D., Huang, X., Tian, Q., & Zhang, Z. (2020). Changes in vegetation growth dynamics and relations with climate in inner mongolia under more strict multiple pre-processing (2000-2018). Sustainability (Switzerland). 12(6), 2534. Available from: https://doi.org/10.3390/SU12062534
- Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S. et al. (2013) Global flood risk under climate change. Nature Climate Change, 3(9), 816–821.
- Hobbs, P.V. & Rangno, A.L. (1998) Microstructures of low and middle-level clouds over the Beaufort Sea. Quarterly Journal of the Royal Meteorological Society, 124(550), 2035–2071.
- Hu, S., Wu, B., Zhou, T. & Yu, Y. (2021) Dominant anomalous circulation patterns of Tibetan Plateau summer climate generated by ENSO-forced and ENSO-independent teleconnections. Journal of Climate, 35(5), 1679–1694. Available from: https://doi.org/10.1175/jcli-d-21-0207.1
- Huang, J., Zhang, X., Zhang, Q., Lin, Y., Hao, M., Luo, Y. et al. (2017) Recently amplified arctic warming has contributed to a continual global warming trend. Nature Climate Change, 7(12), 875–879.
- Huang, R.X. (2013) Ocean, energy flows in. In: Reference module in earth systems and environmental sciences. Elsevier. Available from: https://doi.org/10.1016/B978-0-12-409548-9.01198-2
- Hudgins, L., Friehe, C.A. & Mayer, M.E. (1993) Wavelet transforms and atmopsheric turbulence. Physical Review Letters, 71(20), 3279–3282.
- Hurd, B. & Rouhi-Rad, M. (2013) Estimating economic effects of changes in climate and water availability. Climatic Change, 117(3), 575–584. Available from: https://doi.org/10.1007/S10584-012-0636-9
- Ichii, K., Kawabata, A. & Yamaguchi, Y. (2002) Global correlation analysis for NDVI and climatic variables and NDVI trends: 1982-1990. International Journal of Remote Sensing, 23(18), 3873–3878. Available from: https://doi.org/10.1080/01431160110119416
- Immerzeel, W.W., Van Beek, L.P.H. & Bierkens, M.F.P. (2010) Climate change will affect the asian water towers. Science, 328(5984), 1382–1385. Available from: https://doi.org/10.1126/science.1183188
- Kang, S., Zhang, Q., Qian, Y., Ji, Z., Li, C., Cong, Z. et al. (2019) Linking atmospheric pollution to cryospheric change in the Third Pole region: current progress and future prospects. National Science Review, 6(4), 796–809.
- Kim, J.W., Yeh, S.W. & Chang, E.C. (2013) Combined effect of El Niño–Southern Oscillation and Pacific Decadal Oscillation on the East Asian winter monsoon. Climate Dynamics, 42(3), 957–971.
- Kumar, P. & Foufoula-Georgiou, E. (1997) Wavelet analysis for geophysical applications. Reviews of Geophysics, 35(4), 385–412. Available from: https://doi.org/10.1029/97RG00427
- Kundzewicz, Z.W., Kanae, S., Seneviratne, S.I., Handmer, J., Nicholls, N., Peduzzi, P. et al. (2014) Le risque d'inondation et les perspectives de changement climatique mondial et régional. Hydrological Sciences Journal, 59(1), 1–28.
- Kawabata, A., Ichii, K. & Yamaguchi, Y. (2001) Global monitoring of interannual changes in vegetation activities using NDVI and its relationships to temperature and precipitation. International Journal of Remote Sensing, 22(7), 1377–1382. Available from: https://doi.org/10.1080/01431160119381
- Latif, M., Collins, M., Pohlmann, H. & Keenlyside, N. (2006) A review of predictability studies of Atlantic sector climate on decadal time scales. Journal of Climate, 19(23), 5971–5987.
- Lee, M., Kim, T., Cha, D.H., Min, S.K., Park, D.S.R., Yeh, S.W. et al. (2021) How does Pacific Decadal Oscillation affect tropical cyclone activity over Far East Asia? Geophysical Research Letters, 48(24), e2021GL096267.
- Li, J., Li, F., He, S., Wang, H. & Orsolini, Y.J. (2021a) The Atlantic multidecadal variability phase dependence of teleconnection between the North Atlantic oscillation in february and the tibetan plateau in March. Journal of Climate, 34(11), 4227–4242. Available from: https://doi.org/10.1175/JCLI-D-20-0157.1
- Li, J., Yao, Q., Zhou, N. & Li, F. (2021b) Modern aeolian desertification on the Tibetan Plateau under climate change. Land Degradation & Development, 32(5), 1908–1916.
- Li, L. & Zha, Y. (2019) Satellite-based regional warming hiatus in China and its implication. Science of the Total Environment, 648, 1394–1402. Available from: https://doi.org/10.1016/j.scitotenv.2018.08.233
- Li, Q., Zhao, M., Yang, S., Shen, X., Dong, L. & Liu, Z. (2021c) A zonally-oriented teleconnection pattern induced by heating of the western Tibetan Plateau in boreal summer. Climate Dynamics, 57(9–10), 2823–2842. Available from: https://doi.org/10.1007/s00382-021-05841-6
- Li, T. & Li, J. (2017) A 564-year annual minimum temperature reconstruction for the east central Tibetan Plateau from tree rings. Global and Planetary Change, 157, 165–173. Available from: https://doi.org/10.1016/j.gloplacha.2017.08.018
- Liang, M., Xu, J., Chan, J.C.L., Wu, L. & Xu, X. (2020) Changing relationship between Tibetan Plateau temperature and South China Sea summer monsoon precipitation. Frontiers in Environmental Science, 8, 231. Available from: https://doi.org/10.3389/FENVS.2020.583466/BIBTEX
- Liu, J., Guan, X., Gao, Z., Huang, X., Ma, J., He, Y. et al. (2022a) Inter-decadal variability of the heat source over the Tibetan Plateau. Climate Dynamics, 58(3–4), 729–739.
- Liu, X., Zhang, Y., Liu, Y., Zhao, X., Zhang, J. & Rui, Y. (2020) Characteristics of temperature evolution from 1960 to 2015 in the Three Rivers' Headstream Region, Qinghai, China. Scientific Reports, 10(1), 1–17.
- Liu, Y., Li, Y., Li, S. & Motesharrei, S. (2015) Spatial and temporal patterns of global NDVI trends: correlations with climate and human factors. Remote Sensing, 7(10), 13233–13250.
- Liu, Y., Sun, C. & Li, J. (2022b) The boreal summer zonal wavenumber-3 trend pattern and its connection with surface enhanced warming. Journal of Climate, 35(2), 833–850.
- Ma, J., Guan, X., Guo, R., Gan, Z. & Xie, Y. (2017) Mechanism of non-appearance of hiatus in Tibetan Plateau. Scientific Reports, 7(1), 1–11.
- Ma, Q., You, Q., Ma, Y., Cao, Y., Zhang, J., Niu, M. et al. (2021) Changes in cloud amount over the Tibetan Plateau and impacts of large-scale circulation. Atmospheric Research, 249, 105332.
- Matsumura, S. & Horinouchi, T. (2016) Pacific Ocean Decadal forcing of long-term changes in the western Pacific subtropical high. Scientific Reports, 6(1), 1–7.
- McPhaden, M.J., Zebiak, S.E. & Glantz, M.H. (2006) ENSO as an integrating concept in earth science. Science, 314(5806), 1740–1745. Available from: https://doi.org/10.1126/SCIENCE.1132588
- Miyakoda, K., Kinter, J.L. & Yang, S. (2003) The role of ENSO in the South Asian monsoon and pre-monsoon signals over the Tibetan Plateau. Journal of the Meteorological Society of Japan. Ser. II, 81(5), 1015–1039.
- NOAA. (2020) Global climate report—Annual 2020. Silver Spring, MD: NOAA. Available from: https://www.ncdc.noaa.gov/sotc/global/202013 [Accessed on 2nd March 2022]
- Pan, N., Feng, X., Fu, B., Wang, S., Ji, F. & Pan, S. (2018) Increasing global vegetation browning hidden in overall vegetation greening: Insights from time-varying trends. Remote Sensing of Environment, 214, 59–72. Available from: https://doi.org/10.1016/j.rse.2018.05.018
- Peng, X., Frauenfeld, O.W., Jin, H., Du, R., Qiao, L., Zhao, Y. et al. (2021) Assessment of temperature changes on the Tibetan Plateau during 1980–2018. Earth and Space Science, 8(4), e2020EA001609.
- Qian, Q.F., Jia, X.J. & Wu, R. (2019) Changes in the impact of the autumn Tibetan Plateau snow cover on the winter temperature over North America in the mid-1990s. Journal of Geophysical Research: Atmospheres, 124(19), 10321–10343.
- Qin, J., Yang, K., Liang, S. & Guo, X. (2009) The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Climatic Change, 97(1), 321–327.
- Santoso, A., Mcphaden, M.J. & Cai, W. (2017) The defining characteristics of ENSO extremes and the strong 2015/2016 El Niño. Reviews of Geophysics, 55(4), 1079–1129.
- Shah, L., Arnillas, C.A. & Arhonditsis, G.B. (2022) Characterizing temporal trends of meteorological extremes in southern and Central Ontario, Canada. Weather and Climate Extremes, 35, 100411. Available from: https://doi.org/10.1016/J.WACE.2022.100411
- Shaman, J. & Tziperman, E. (2005) The effect of ENSO on Tibetan Plateau snow depth: a stationary wave teleconnection mechanism and implications for the South Asian monsoons. Journal of Climate, 18(12), 2067–2079. Available from: https://doi.org/10.1175/JCLI3391.1
- Shi, C., Sun, C., Wu, G., Wu, X., Chen, D., Masson-Delmotte, V. et al. (2019) Summer temperature over the Tibetan Plateau modulated by Atlantic multidecadal variability. Journal of Climate, 32(13), 4055–4067. Available from: https://doi.org/10.1175/JCLI-D-17-0858.1
- Shi, S., Li, J., Shi, J., Zhao, Y. & Huang, G. (2017) Three centuries of winter temperature change on the southeastern Tibetan Plateau and its relationship with the Atlantic Multidecadal Oscillation. Climate Dynamics, 49(4), 1305–1319.
- Shi, Y. & Su, J. (2020) A statistical comparison of the westerly wind bursts between the positive and negative phases of the PDO. Journal of Meteorological Research, 34(2), 315–324.
- Shine, K.P. (1984) Parametrization of the shortwave flux over high albedo surfaces as a function of cloud thickness and surface albedo. Quarterly Journal of the Royal Meteorological Society, 110(465), 747–764. Available from: https://doi.org/10.1002/QJ.49711046511
- Sime, L.C., Hodgson, D., Bracegirdle, T.J., Allen, C., Perren, B., Roberts, S. et al. (2016) Sea ice led to poleward-shifted winds at the Last Glacial Maximum: the influence of state dependency on CMIP5 and PMIP3 models. Climate of the Past, 12(12), 2241–2253. Available from: https://doi.org/10.5194/CP-12-2241-2016
- Sun, C., Li, J. & Jin, F.F. (2015a) A delayed oscillator model for the quasi-periodic multidecadal variability of the NAO. Climate Dynamics, 45(7–8), 2083–2099.
- Sun, C., Li, J. & Zhao, S. (2015b) Remote influence of Atlantic multidecadal variability on Siberian warm season precipitation. Scientific Reports, 5(1), 1–9.
- Sun, J., Yang, K., Guo, W., Wang, Y., He, J. & Lu, H. (2020) Why has the inner tibetan plateau become wetter since the mid-1990s? Journal of Climate, 33(19), 8507–8522. Available from: https://doi.org/10.1175/JCLI-D-19-0471.1
- Sun, W., Qin, X., Du, W., Liu, W., Liu, Y., Zhang, T. et al. (2014) Ablation modeling and surface energy budget in the ablation zone of Laohugou glacier No. 12, western Qilian mountains, China. Annals of Glaciology, 55(66), 111–120.
- Tang, Q. & Leng, G. (2012) Damped summer warming accompanied with cloud cover increase over Eurasia from 1982 to 2009. Environmental Research Letters, 7(1), 014004.
- Tang, Y., Duan, A., Xiao, C. & Xin, Y. (2022) The prediction of the Tibetan Plateau thermal condition with machine learning and Shapley additive explanation. Remote Sensing, 14(17), 4169.
- Teuling, A.J. (2018). A hot future for European droughts. Nature Climate Change 2018, 8(5), 364–365. Available from: https://doi.org/10.1038/s41558-018-0154-5
- Torrence, C. & Compo, G.P. (1998) A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79(1), 61–78.
- Vaid, B.H. & Kripalani, R.H. (2022) Upper vertical thermal contrast over the western Tibetan Plateau and its impact on convection over the Mediterranean region during ENSO events. Meteorology and Atmospheric Physics, 134(2), 1–10.
- Van Den Dool, H.M., Saha, S. & Johansson, Å. (2000) Empirical orthogonal teleconnections. Journal of Climate, 13(8), 1421–1435. Available from: https://doi.org/10.1175/1520-0442(2000)013<1421:EOT>2.0.CO;2
- Wang, L., Chen, W. & Huang, R. (2008) Interdecadal modulation of PDO on the impact of ENSO on the east Asian winter monsoon. Geophysical Research Letters, 35(20), 20702.
- Wang, Y., Peng, D., Shen, M., Xu, X., Yang, X., Huang, W. et al. (2020a) Contrasting effects of temperature and precipitation on vegetation greenness along elevation gradients of the tibetan plateau. Remote Sensing, 12(17), 2751.
- Wang, Z., Li, J., Lai, C., Zeng, Z., Zhong, R., Chen, X. et al. (2017) Does drought in China show a significant decreasing trend from 1961 to 2009? Science of the Total Environment, 579, 314–324. Available from: https://doi.org/10.1016/J.SCITOTENV.2016.11.098
- Wang, Z., Wu, R., Duan, A. & Qu, X. (2020b) Influence of eastern Tibetan Plateau spring snow cover on North American air temperature and its interdecadal change. Journal of Climate, 33(12), 5123–5139.
- Wei, M., Song, Z., Shu, Q., Yang, X., Song, Y. & Qiao, F. (2022) Revisiting the existence of the global warming slowdown during the early twenty-first century. Journal of Climate, 35(6), 1853–1871.
- Winsemius, H.C., Aerts, J.C.J.H., van Beek, L.P.H., Bierkens, M.F.P., Bouwman, A., Jongman, B. et al. (2016) Global drivers of future river flood risk. Nature Climate Change, 6(4), 381–385.
- Wu, G., Liu, Y., Zhang, Q., Duan, A., Wang, T., Wan, R. et al. (2007) The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. Journal of Hydrometeorology, 8(4), 770–789.
- Wu, X. & Mao, J. (2016) Interdecadal modulation of ENSO-related spring rainfall over South China by the Pacific Decadal Oscillation. Climate Dynamics, 47(9–10), 3203–3220.
- Xie, T., Li, J., Chen, K., Zhang, Y. & Sun, C. (2021) Origin of Indian Ocean multidecadal climate variability: role of the North Atlantic Oscillation. Climate Dynamics, 56(9–10), 3277–3294.
- Xu, G., Liu, X., Zhang, Q., Zhang, Q., Hudson, A. & Trouet, V. (2019) Century-scale temperature variability and onset of industrial-era warming in the eastern Tibetan Plateau. Climate Dynamics, 53(7–8), 4569–4590.
- Xu, X., Lu, C., Shi, X. & Gao, S. (2008a) World water tower: an atmospheric perspective. Geophysical Research Letters, 35(20), L20815. Available from: https://doi.org/10.1029/2008GL035867
- Xu, Z.X., Gong, T.L. & Li, J.Y. (2008b) Decadal trend of climate in the Tibetan Plateau—regional temperature and precipitation. Hydrological Processes, 22, 3056–3065. Available from: https://doi.org/10.1002/hyp.6892
- Yadav, S.K., Lee, E. & He, Y. (2022) Positive associations of vegetation with temperature over the alpine grasslands in the Western Tibetan Plateau during May. Earth Interactions, 26(1), 94–111.
- Yanai, M., Li, C. & Song, Z. (1992) Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon. Journal of the Meteorological Society of Japan, 70(1), 319–351. Available from: https://doi.org/10.2151/jmsj1965.70.1B_319
- Yang, Y., Wang, S., Bai, X., Tan, Q., Li, Q., Wu, L. et al. (2019) Factors affecting long-term trends in global NDVI. Forests, 10(5), 372. Available from:. Available from: https://doi.org/10.3390/f10050372
- Yang, J., Liu, Q., Xie, S.P., Liu, Z. & Wu, L. (2007) Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophysical Research Letters, 34(2), L02708.
- Yang, R. & Xing, B. (2022) Teleconnections of large-scale climate patterns to regional drought in mid-latitudes: a case study in Xinjiang, China. Atmosphere, 13(2), 230. Available from: https://doi.org/10.3390/atmos13020230
- Yang, X., Yao, T., Zhao, H. & Xu, B. (2018) Possible ENSO influences on the northwestern Tibetan Plateau revealed by annually resolved ice core records. Journal of Geophysical Research: Atmospheres, 123(8), 3857–3870.
- Yang, Y., Zhao, L., Shen, X., Xiao, Z. & Li, Q. (2022) The spring heat source over the Qinghai–Tibetan Plateau linked with the winter warm Arctic–Cold Siberia pattern impacting summer drought in China. Frontiers in Earth Science, 10, 94.
- Yao, T., Liu, X., Wang, N. & Shi, Y. (2000) Amplitude of climatic changes in Qinghai-Tibetan Plateau. Chinese Science Bulletin, 45(13), 1236–1243.
- Yao, T., Masson-Delmotte, V., Gao, J., Yu, W., Yang, X., Risi, C. et al. (2013) A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: observations and simulations. Reviews of Geophysics, 51(4), 525–548.
- Yin, H., Li, M.Y. & Huang, L. (2021) Summer mean temperature reconstruction based on tree-ring density over the past 440 years on the eastern Tibetan Plateau. Quaternary International, 571, 81–88. Available from: https://doi.org/10.1016/J.QUAINT.2020.09.018
- You, Q., Fraedrich, K., Ren, G., Pepin, N. & Kang, S. (2013) Variability of temperature in the Tibetan Plateau based on homogenized surface stations and reanalysis data. International Journal of Climatology, 33(6), 1337–1347.
- Zhang, C., Tang, Q. & Chen, D. (2017) Recent changes in the moisture source of precipitation over the Tibetan Plateau. Journal of Climate, 30(5), 1807–1819.
- Zhang, F., Yu, Q.R., Mao, J.L., Dan, C., Wang, Y., He, Q. et al. (2020) Possible mechanisms of summer cirrus clouds over the Tibetan Plateau. Atmospheric Chemistry and Physics, 20(20), 11799–11808. Available from: https://doi.org/10.5194/ACP-20-11799-2020
- Zhao, C., Yang, Y., Fan, H., Huang, J., Fu, Y., Zhang, X. et al. (2020) Aerosol characteristics and impacts on weather and climate over the Tibetan Plateau. National Science Review, 7(3), 492–495.
- Zhisheng, A., Kutzbach, J.E., Prell, W.L. & Porter, S.C. (2001) Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan Plateau since Late Miocene times. Nature, 411(6833), 62–66. Available from: https://doi.org/10.1038/35075035
- Zhu, B., Sun, B., Li, H. & Wang, H. (2020) Interdecadal variations in extreme high-temperature events over southern China in the early 2000s and the influence of the pacific decadal oscillation. Atmosphere, 11(8), 829. Available from: https://doi.org/10.3390/ATMOS11080829
- Zhu, L., Huang, G., Fan, G., Qü, X., Wang, Z. & Hua, W. (2019) Elevation-dependent sensible heat flux trend over the Tibetan Plateau and its possible causes. Climate Dynamics, 52(7–8), 3997–4009.
- Zhu, Z., Piao, S., Myneni, R.B., Huang, M., Zeng, Z., Canadell, J.G. et al. (2016) Greening of the earth and its drivers. Nature Climate Change, 6(8), 791–795.
- Zou, F., Li, H. & Hu, Q. (2020) Responses of vegetation greening and land surface temperature variations to global warming on the Qinghai-Tibetan Plateau, 2001–2016. Ecological Indicators, 119, 106867. Available from: https://doi.org/10.1016/j.ecolind.2020.106867