Assessment of hot weather seasonal temperatures over India using Monsoon Mission Coupled Forecasting System hindcasts
Corresponding Author
P. Rohini
India Meteorological Department, Ministry of Earth Sciences, Pune, India
Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune, India
Correspondence
P. Rohini, India Meteorological Department, Pune 411005, Maharashtra, India.
Email: [email protected]
Search for more papers by this authorSuryachandra A. Rao
Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune, India
Search for more papers by this authorPrasanth A. Pillai
Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune, India
Search for more papers by this authorCorresponding Author
P. Rohini
India Meteorological Department, Ministry of Earth Sciences, Pune, India
Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune, India
Correspondence
P. Rohini, India Meteorological Department, Pune 411005, Maharashtra, India.
Email: [email protected]
Search for more papers by this authorSuryachandra A. Rao
Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune, India
Search for more papers by this authorPrasanth A. Pillai
Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune, India
Search for more papers by this authorAbstract
The present study evaluates the skill of seasonal forecasts of temperatures over India during April to June using the Monsoon Mission Coupled Forecasting System (MMCFS) model hindcasts, which are initialized with February initial conditions. Model hindcast data of 1981–2017 period have been used for the analysis. The India Meteorological Department (IMD) gridded temperature dataset has been used for model verifications. The MMCFS model captures the annual cycle of temperatures reasonably well, but with a higher mean and smaller variability compared to observations. The model hindcasts show a significant skill for seasonal forecasts of temperatures over most of northwest and central India. Empirical Orthogonal Function (EOF) analysis suggests that the model captures temporal and spatial characteristics of different modes of maximum temperatures but with less accuracy. The model teleconnections of maximum temperatures with Indian Ocean sea surface temperatures (SSTs) and El Niño–Southern Oscillation (ENSO) are weakly represented. The model is also found capable of predicting the spatial distribution of heat wave characteristics such as heat wave frequency (HWF) and heat wave duration (HWD) reasonably well. The present study suggests that the MMCFS Model can be used to generate a useful outlook of hot weather seasonal temperatures and heat waves over India.
REFERENCES
- Arora, M., Goel, N.K. and Singh, P. (2005) Evaluation of temperature trends over India. Hydrological Sciences Journal, 50(1), 81–93.
- Benke, M., Takle, J., Pai, D.S. and Rao S.A. (2019) Analysis of Monsoon Mission Coupled Forecasting System (MMCFS) model simulations of sub-division scale temperatures over India for the hot weather season (April–June). Journal of Earth System Science, 128, 182. https://doi.org/10.1007/s12040-019-1178-6.
- Coumou, D. and Rahmstorf, S. (2012) A decade of weather extremes. Nature Climate Change, 2, 491–496. https://doi.org/10.1038/nclimate1452.
- Cowan, T., Purich, A., Perkins, S., Pezza, A., Boschat, G. and Sadler, K. (2014) More frequent, longer, and hotter heat waves for Australia in the twenty-first century. Journal of Climate, 27(15), 5851–5871. https://doi.org/10.1175/JCLI-D-14-00092.1.
- Dash, S.K., Jenamani, R.K., Kalsi, S.R. and Panda, S.K. (2007) Some evidence of climate change in twentieth-century India. Climatic Change, 85, 299–321.
- Ding, T., Qian, W. and Yan, Z. (2010) Changes in hot days and heat waves in China during 1961–2007. International Journal of Climatology, 30(10), 1452–1462.
- Dirmeyer, P.A. (2011) The terrestrial segment of soil moisture–climate coupling. Geophysical Research Letters, 38, L16702. https://doi.org/10.1029/2011GL048268.
- Doblas-Reyes, F.J., García-Serran, J., Lienert, F., Biescas, A.P. and Rodrigues, L.R.L. (2013) Seasonal climate predictability and forecasting: status and prospects. Wiley Interdisciplinary Reviews: Climate Change, 4, 245–268. https://doi.org/10.1002/wcc.217.
- George, G., Rao, D.N., Sabeerali, C.T., Srivastava, A. and Rao, S.A. (2015) Indian summer monsoon prediction and simulation in CFSv2 coupled model. Atmospheric Science Letters, 17, 57–64. https://doi.org/10.1002/asl.599.
- Griffies, S.M., Harrison, M.J., Pacanowski, R.C. and Rosati, A. (2004) A technical guide to MOM4, GFDL Ocean Group. NOAA/GFDL. Technical Report: 5, p. 371.
- Guo, Z., Dirmeyer, P.A., Koster, R.D., Sud, Y.C., Bonan, C., Oleson, K.W., Chan, E., Verseghy, D., Cox, P., Gordon, C.T. and McGregor, J.L. (2006) GLACE: the global land–atmosphere coupling experiment. Part II: analysis. Journal of Hydrometeorology, 7(4), 611–625. https://doi.org/10.1175/JHM511.1.
- Halder, S., Dirmeyer, P.A., Marx, L. and Kinter, J.L. (2018) Impact of land surface initialization and land–atmosphere coupling on the prediction of the Indian summer monsoon with the CFSv2. Frontiers in Environmental Science, 5, 92.
- Hatvani-Kovacs, G., Belusko, M., Pockett, J. and Boland, J. (2016) Assessment of heatwave impacts. Procedia Engineering, 169, 316–323. https://doi.org/10.1016/j.proeng.2016.10.039.
- IMD. (2016) Annual climate summary 2016. Pune: National Climate Centre, India Meteorological Department, p. 24. Available at: http://rcc.imdpune.gov.in/Annual_Climate_Summary/annual_summary_2016.pdf.
- IMD. (2019) Annual climate summary 2019. Pune: National Climate Centre, India Meteorological Department, p. 24. Available at: http://www.imdpune.gov.in/Links/annual_summary_2019.pdf.
- Intergovernmental Panel on Climate Change (IPCC). (2012) In: C.B. Field, V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, K.J. Mach, G.-K. Plattner, S.K. Allen, M. Tignor, and P.M. Midgley (Eds.), Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge and New York, NY: Cambridge University Press, p. 52.
- Intergovernmental Panel on Climate Change (IPCC). (2014) Climate Change 2014 Synthesis Report: Summary for Policymakers. Cambridge and New York, NY: Cambridge University Press.
- Koster, R.D., Dirmeyer, P.A., Guo, Z., Bonan, G., Chan, E., Cox, P., Gordon, C.T., Kanae, S., Kowalczyk, E., Lawrence, D., Liu, P., Lu, C.H., Malyshev, S., McAvaney, B., Mitchell, K., Mocko, D., Oki, T., Oleson, K., Pitman, A., Sud, Y.C., Taylor, C.M., Verseghy, D., Vasic, R., Xue, Y., Yamada, T. and GLACE Team. (2004) Regions of strong coupling between soil moisture and precipitation. Science, 305, 1138–1140. https://doi.org/10.1126/science.1100217.
- Kothawale, D.R., Munot, A.A. and Krishna Kumar, K. (2010) Surface air temperature variability over India during 1901–2007 and its association with ENSO. Climate Research, 42, 89–104. https://doi.org/10.3354/cr00857.
- Kothawale, D.R. and Rupa Kumar, K. (2005) On the recent changes in surface temperature trends over India. Geophysical Research Letters, 32, L18714. https://doi.org/10.1029/2005GL023528.
- Kothawale, D.R. and Singh, H.N. (2017) Recent trends in tropospheric temperature over India during the period 1971–2015. Earth Space Science, 4(5), 240–246.
- Mandal, R., Joseph, S., Sahai, A. K., Phani, R., Dey, A., Chattopadhyay, R. and Pattanaik, D. R. (2019). Real time extended range prediction of heat waves over India. Scientific reports, 9(1), 1–11.
- Mazdiyasni, O., AghaKouchak, A., Davis, S.J., Madadgar, S., Mehran, A., Ragno, E., Sadegh, M., Sengupta, A., Ghosh, S., Dhanya, C.T. and Niknejad, M. (2017) Increasing probability of mortality during Indian heat waves. Science Advances, 3(6), e1700066. https://doi.org/10.1126/sciadv.1700066.
- Meehl, G. and Tebaldi, C. (2004) More intense, more frequent, and longer lasting heat waves inthe 21st century. Science, 305, 994–997. https://doi.org/10.1126/science.1098704.
- Moorthi, S.H., Pan, L. and Caplan, P. (2001) Changes to the 2001 NCEP operational MRF/AVN global analysis/forecast system. Technical Procedure Bulletin, Service No. 484. Silver Spring, MD: National Weather Service. Office of Meteorology. Available at: http://205.156.54.206/om/tpb/484.htm.
- Pai, D.S., Nair, S.A. and Ramanathan, A.N. (2013) Long term climatology and trends of heat waves over India during the recent 50 years (1961–2010). Mausam, 64(4), 585–604.
- Panda, D.K., AghaKouchak, A. and Ambast, S.K. (2017) Increasing heat waves and warm spells in India, observed from a multiaspect framework. Journal of Geophysical Research: Atmospheres, 122(7), 3837–3858.
- Pepler, A.S., Diaz, L., Prodhomme, C., Doblas-Reyes, F.J. and Kumar, A. (2015) The ability of a multi-model seasonal forecasting ensemble to forecast the seasonal distribution of daily extremes. Weather and Climate Extremes, 9, 68–77.
- Perkins, S.E. (2015) A review on the scientific understanding of heatwaves—their measurement, driving mechanisms, and changes at the global scale. Atmospheric Research, 164–165, 242–267. https://doi.org/10.1016/j.atmosres.2015.05.014.
- Perkins, S.E., Alexander, L.V. and Nairn, J.R. (2012) Increasing frequency, intensity and duration of observed heatwaves and warm spells. Geophysical Research Letters, 39, L20714. https://doi.org/10.1029/2012GL053361.
- Purnadurga, G., Lakshmi Kumar, T.V., Koteswara Rao, K., Rajasekhar, M. and Narayanan, M.S. (2017) Investigation of temperature changes over India in association with eteorological parameters in a warming climate. International Journal of Climatology, 38, 867–877.
- Ramu, D.A., Sabeerali, C.T., Chattopadhyay, R., Nagarjuna Rao, D., George, G., Dhakate, A.R., Salunke, K., Srivastava, A. and Rao, S.A. (2016) Indian summer monsoon rainfall simulation and prediction skill in the CFSv2 coupled model: impact of atmospheric horizontal resolution. Journal of Geophysical Research: Atmospheres, 121, 2205–2221. https://doi.org/10.1002/2015JD024629.
- Rao, S.A., Goswami, B.N., Sahai, A.K., Rajagopal, E.N., Mukhopadhyay, P., Rajeevan, M., Nayak, S., Rathore, L.S., Shenoi, S.S.C., Ramesh, K.J., Nanjundiah, R.S., Ravichandran M., Mitra A.K., Pai D.S., Bhowmik S.K.R., Hazra A., Mahapatra S., Saha S.K., Chaudhari H.S., Joseph S., Sreenivas P., Pokhrel S., Pillai P.A., Chattopadhyay R., Deshpande M., Krishna R.P.M., Das R.S., Prasad V.S., Abhilash S., Panickal S., Krishnan R., Kumar S., Ramu D.A., Reddy S.S., Arora A., Goswami T., Rai A., Srivastava A., Pradhan M., Tirkey S., Ganai M., Mandal R., Dey A., Sarkar S., Malviya S., Dhakate A., Salunke K., and Maini P. (2019). Monsoon Mission: A targeted activity to improve monsoon prediction across scales. Bulletin of the American Meteorological Society, 100(12), 2509–2532. https://doi.org/10.1175/bams-d-17-0330.1
- Ratnam, J.V., Behera, S.K., Ratna, S.B., Rajeevan, M. and Yamagata, T. (2016) Anatomy of Indian heatwaves. Science Reports, 6, 24395. https://doi.org/10.1038/srep24395.
- Rayner, N.A., Parker, D.E., Horton, E.B., Folland, C.K., Alexander, L.V., Rowell, D.P., Kent, E.C. and Kaplan, A. (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research, 108(D14), 4407. https://doi.org/10.1029/2002JD002670.
- Rohini, P., Rajeevan, M. and Mukhopadhay, P. (2019) Future projections of heat waves over India from CMIP5 models. Climate Dynamics, 53, 975–988. https://doi.org/10.1007/s00382-019-04700-9.
- Rohini, P., Rajeevan, M. and Srivastava, A.K. (2016) On the variability and increasing trends of heat waves over India. Scientific Reports, 6, 26153.
- Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R., Gayno, G., Hou, Y.-T., Chuang, H.-Y., Juang, H.-M.H., Sela, J., Iredell, M., Treadon, R., Kleist, D., van Delst, P., Keyser, D., Derber, J., Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., van den Dool, H., Kumar, A., Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J.-K., Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W., Zou, C.-Z., Liu, Q., Chen, Y., Han, Y., Cucurull, L., Reynolds, R.W., Rutledge, G. and Goldberg, M. (2010) The NCEP Climate Forecast System Reanalysis. Bulletin of the American Meteorological Society, 91, 1015–1057.
- Scott, D. and Lemieux, C. (2010) Weather and climate information for tourism. Procedia Environmental Sciences, 1, 146–183.
- Srivastava, A.K., Kothawale, D.R. and Rajeevan, M.N. (2017) Variability and long-term changes in surface air temperatures over the Indian subcontinent. In: M.N. Rajeevan and S. Nayak (Eds.) Observed Climate Variability and Change over the Indian Region. Springer Geology. Singapore: Springer, pp. 17–35. https://doi.org/10.1007/978-981-10-2531-0_2.
- Srivastava, A. K., Rajeevan, M. and Kshirsagar, S. R. (2009). Development of a high resolution daily gridded temperature data set (1969–2005) for the Indian region. Atmospheric Science Letters 10(4), 249–254.
- Vittal, H., Villarini, G. and Zhang, W. (2020). On the role of the atlantic ocean in exacerbating indian heat waves. Climate dynamics, 54(3), 1887–1896.