Spatiotemporal patterns of ENSO-precipitation relationships in the tropical Andes of southern Peru and Bolivia
Joseph A. Jonaitis
Department of Geography and Planning, Appalachian State University, Boone, North Carolina, USA
Search for more papers by this authorCorresponding Author
L. Baker Perry
Department of Geography and Planning, Appalachian State University, Boone, North Carolina, USA
Correspondence
L. Baker Perry, Department of Geography and Planning, Appalachian State University, Boone, NC.
Email: [email protected]
Search for more papers by this authorPeter T. Soulé
Department of Geography and Planning, Appalachian State University, Boone, North Carolina, USA
Search for more papers by this authorChristopher Thaxton
Department of Physics and Astronomy, Appalachian State University, Boone, North Carolina, USA
Search for more papers by this authorMarcos F. Andrade-Flores
Laboratorio de Física de la Atmósfera, Instituto de Investigaciones Físicas, Universidad Mayor de San Andrés, La Paz, Bolivia
Department of Atmospheric and Oceanic Science, University of Maryland, College Park, Maryland, USA
Search for more papers by this authorTania Ita Vargas
Department of Geography and Planning, Appalachian State University, Boone, North Carolina, USA
Search for more papers by this authorLaura Ticona
Laboratorio de Física de la Atmósfera, Instituto de Investigaciones Físicas, Universidad Mayor de San Andrés, La Paz, Bolivia
Search for more papers by this authorJoseph A. Jonaitis
Department of Geography and Planning, Appalachian State University, Boone, North Carolina, USA
Search for more papers by this authorCorresponding Author
L. Baker Perry
Department of Geography and Planning, Appalachian State University, Boone, North Carolina, USA
Correspondence
L. Baker Perry, Department of Geography and Planning, Appalachian State University, Boone, NC.
Email: [email protected]
Search for more papers by this authorPeter T. Soulé
Department of Geography and Planning, Appalachian State University, Boone, North Carolina, USA
Search for more papers by this authorChristopher Thaxton
Department of Physics and Astronomy, Appalachian State University, Boone, North Carolina, USA
Search for more papers by this authorMarcos F. Andrade-Flores
Laboratorio de Física de la Atmósfera, Instituto de Investigaciones Físicas, Universidad Mayor de San Andrés, La Paz, Bolivia
Department of Atmospheric and Oceanic Science, University of Maryland, College Park, Maryland, USA
Search for more papers by this authorTania Ita Vargas
Department of Geography and Planning, Appalachian State University, Boone, North Carolina, USA
Search for more papers by this authorLaura Ticona
Laboratorio de Física de la Atmósfera, Instituto de Investigaciones Físicas, Universidad Mayor de San Andrés, La Paz, Bolivia
Search for more papers by this authorFunding information: National Science Foundation, Grant/Award Number: AGS-1347179
Abstract
Precipitation in the outer tropical Andes is highly seasonal, exhibits considerable interannual variability, and is vital for regulating freshwater availability, flooding, glacier mass balance, and droughts. The primary driver of interannual variability is El Niño Southern Oscillation (ENSO), with most investigations reporting that the El Niño (La Niña) results in negative (positive) precipitation anomalies across the region. Recent investigations, however, have identified substantial spatiotemporal differences in ENSO-precipitation relationships. Motivated by the dissimilarity of these findings, this study examines a carefully selected data set (≥ 90% completeness) of ground-based precipitation observations from 75 high-elevation (≥ 2,500 m above sea level) meteorological stations in the tropical Andes of southern Peru and Bolivia for the period 1972–2016. Distinct groups of stations and associated variability in precipitation characteristics (e.g., total seasonal precipitation, wet season onset, and wet season length) are identified. Using no spatial constraints, the K-Means algorithm optimally grouped stations into five easily identifiable groups. The groups farthest from the Amazon basin had significant negative (positive) precipitation anomalies (p < .05) during El Niño (La Niña), aligning with the traditional view of ENSO-precipitation relationships while groups closest to the Amazon had opposite relationships. Additionally, though studies have reported delays in the wet season, years characterized by El Niño had an earlier wet season onset in all five groups. These findings may aid in improving seasonal climate prediction and managing water resources, and could allow for improved interpretation of tropical Andean ice cores.
REFERENCES
- Aalto, R., Maurice-Bourgoin, L., Dunne, T., Montgomery, D.R., Nittrouer, C.A. and Guyot, J.L. (2003) Episodic sediment accumulation on Amazonian flood plains influenced by El Nino/southern oscillation. Nature, 425(6957), 493–497. https://doi.org/10.1038/nature02002.
- Aceituno, P. (1988) On the functioning of the southern oscillation in the south American sector. Part I: surface climate. Monthly Weather Review, 116(3), 505–524. https://doi.org/10.1175/1520-0493(1988)116<0505:OTFOTS>2.0.CO;2.
- Anderson, E.P., Marengo, J., Villalba, R., Halloy, S., Young, B., Cordero, D., Gast, F., Jaimes, E., Ruiz, D., Herzog, S.K. and Martinez, R., 2017. Consequences of climate change for ecosystems and ecosystem services in the tropical Andes. . INCT-Mudancas Climaticas. Montivedeo, Uruguay: Inter-American Institute of Global Change Research (IAI).
- Andrade, M.F., Moreno, I., Calle, J.M., Ticona, L., Blacutt, L., Lavado-Casimiro, W., Sabino, E., Huerta, A., Aybar, C., Hunziker, S. and Brönnimann, S., 2018. Atlas-Clima y eventos extremos del Altiplano Central Perú-Boliviano. Carrasco, La Paz, Bolivia: Imprenta A.G.
- Bonferroni, C. (1936) Teoria statistica delle classi e calcolo delle probabilita. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commericiali di Firenze, 8, 3–62.
- Bradley, R.S., Vuille, M., Diaz, H.F. and Vergara, W. (2006) Threats to water supplies in the tropical Andes. Science, 312(5781), 1755–1756. https://doi.org/10.1126/science.1128087.
- Caliński, T. and Harabasz, J. (1974) A dendrite method for cluster analysis. Communications in Statistics-theory and Methods, 3(1), 1–27.
10.1080/03610927408827101 Google Scholar
- Chavez, S.P. and Takahashi, K. (2017) Orographic rainfall hot spots in the Andes-Amazon transition according to the TRMM precipitation radar and in situ data. Journal of Geophysical Research-Atmospheres, 122(11), 5870–5882. https://doi.org/10.1002/2016JD026282.
- Climate Prediction Center, 2018. Climate Prediction Center - ONI. Origin.cpc.ncep.noaa.gov. Available at: http://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php [Accessed 15 November 2018].
- Dunn, O.J. (1964) Multiple comparisons using rank sums. Technometrics, 6(3), 241–252.
- Eck, M.A., Perry, L.B., Soulé, P.T., Sugg, J.W. and Miller, D.K. (2017) Winter climate variability in the southern Appalachian Mountains, 1910–2017. International Journal of Climatology, 39(1), 206–217. https://doi.org/10.1002/joc.5795.
- Endries, J.L., Perry, L.B., Yuter, S.E., Seimon, A., Andrade-Flores, M., Winkelmann, R., Quispe, N., Rado, M., Montoya, N., Velarde, F. and Arias, S. (2018) Radar-observed characteristics of precipitation in the tropical high Andes of southern Peru and Bolivia. Journal of Applied Meteorology and Climatology, 57, 1441–1458. https://doi.org/10.1175/JAMC-D-17-0248.1.
- Espinoza, J.C., Chavez, S., Ronchail, J., Junquas, C., Takahashi, K. and Lavado, W. (2015) Rainfall hotspots over the southern tropical Andes: spatial distribution, rainfall intensity, and relations with large-scale atmospheric circulation. Water Resources Research, 51(5), 3459–3475. https://doi.org/10.1002/2014WR016273.
- Favier, V., Wagnon, P. and Ribstein, P. (2004) Glaciers of the outer and inner tropics: a different behaviour but a common response to climatic forcing. Geophysical Research Letters, 31, L16403. https://doi.org/10.1029/2004GL020654.
- Figueroa, S.N., Satyamurty, P. and Da Silva Dias, P.L. (1995) Simulations of the summer circulation over the south American region with an eta coordinate model. Journal of the Atmospheric Sciences, 52(10), 1573–1584. https://doi.org/10.1175/1520-0469(1995)052<1573:SOTSCO>2.0.CO;2.
- Francou, B. and Pizarro, L. (1985) El Nino y la sequía en los altos Andes Centrales. Bulletin de l'Institut Français D'études Andines, 14(1–2), 1–18.
- Francou, B. and Vincent, C. (2007) Les Glaciers à L'épreuve Du Climat. Paris: Editions Belin-IRD, p. 274.
- Francou, B., Vuille, M., Wagnon, P., Mendoza, J. and Sicart, J.E. (2003) Tropical climate change recorded by a glacier in the Central Andes during the last decades of the twentieth century: Chacaltaya, Bolivia, 16 S. Journal of Geophysical Research-Atmospheres, 108. 4154. https://doi.org/10.1029/2002JD002959.
- Garreaud, R. (1999) Cold air incursions over subtropical and tropical South America: a numerical case study. Monthly Weather Review, 127(12), 2823–2853. https://doi.org/10.1175/1520-0493(1999)127<2823:CAIOSA>2.0.CO;2.
- Garreaud, R. (2000) Cold air incursions over subtropical South America: mean structure and dynamics. Monthly Weather Review, 128(7), 2544–2559. https://doi.org/10.1175/1520-0493(2000)128<2544:CAIOSS>2.0.CO;2.
- Garreaud, R. and Aceituno, P. (2001) Interannual rainfall variability over the south American Altiplano. Journal of Climate, 14(12), 2779–2789.
- Garreaud, R., Vuille, M. and Clement, A.C. (2003) The climate of the Altiplano: observed current conditions and mechanisms of past changes. Palaeogeography, Palaeoclimatology, Palaeoecology, 194(1–3), 5–22. https://doi.org/10.1175/1520-0442(2001)014<2779:IRVOTS>2.0.CO;2.
- Giráldez, L., Silva, Y., Zubieta, R. and Sulca, J. (2020) Change of the rainfall seasonality over central Peruvian Andes: onset, end, duration and its relationship with large-scale atmospheric circulation. Climate, 8, 23. https://doi.org/10.3390/cli8020023.
- Guy, H., Seimon, A., Perry, L.B., Konecky, B.L., Rado, M., Andrade, M., Potocki, M. and Mayewski, P.A. (2019) Subseasonal variations of stable isotopes in tropical Andean precipitation. Journal of Hydrometeorology, 20, 915–933. https://doi.org/10.1175/JHM-D-18-0163.1
- Haines, S.A., Mayewski, P.A., Kurbatov, A.V., Maasch, K.A., Sneed, S.B., Spaulding, N.E., Dixon, D.A. and Bohleber, P.D. (2016) Ultra-high resolution snapshots of three multi-decadal periods in an Antarctic ice core. Journal of Glaciology, 62(231), 31–36. https://doi.org/10.1017/jog.2016.5.
- Hartigan, J.A. and Wong, M.A. (1979) Algorithm AS 136: a k-means clustering algorithm. Journal of the Royal Statistical Society: Series C: Applied Statistics, 28(1), 100–108.
10.2307/2346830 Google Scholar
- Heidinger, H., Carvalho, L., Jones, C., Posadas, A. and Quiroz, R. (2018) A new assessment in total and extreme rainfall trends over central and southern Peruvian Andes during 1965–2010. International Journal of Climatology, 38, e998–e1015. https://doi.org/10.1002/joc.5427.
- Huerta, A. and Lavado-Casimiro, W. (2020) Trends and variability of precipitation extremes in the Peruvian Altiplano (1971–2013). International Journal of Climatology, 41, 1–16. https://doi.org/10.1002/joc.6635.
- Hunziker, S., Brönnimann, S., Calle, J., Moreno, I., Andrade, M., Ticona, L., Huerta, A. and Lavado-Casimiro, W. (2018) Effects of undetected data quality issues on climatological analyses. Climate of the Past, 14(1), 1–20. https://doi.org/10.5194/cp-14-1-2018.
- Imfeld, N., Barreto Schuler, C., Correa Marrou, K.M., Jacques-Coper, M., Sedlmeier, K., Gubler, S., Huerta, A. and Brönnimann, S. (2019) Summertime precipitation deficits in the southern Peruvian highlands since 1964. International Journal of Climatology, 39(11), 4497–4513. https://doi.org/10.1002/joc.6087.
- Imfeld, N., Sedlmeier, K., Gubler, S., Correa Marrou, K., Davila, C.P., Huerta, A., Lavado-Casimiro, W., Rohrer, M., Scherrer, S.C. and Schwierz, C. (2021) A combined view on precipitation and temperature climatology and trends in the southern Andes of Peru. Int J Climatol, 41, 679–698. https://doi.org/10.1002/joc.6645.
- Junquas, C., Takahashi, K., Condom, T., Espinoza, J.C., Chavez, S., Sicart, J.E. and Lebel, T. (2018) Understanding the influence of orography on the precipitation diurnal cycle and the associated atmospheric processes in the Central Andes. Climate Dynamics, 50(11–12), 3995–4017. https://doi.org/10.1007/s00382-017-3858-8.
- Knüsel, S., Brütsch, S., Henderson, K.A., Palmer, A.S. and Schwikowski, M. (2005) ENSO signals of the twentieth century in an ice core from Nevado Illimani, Bolivia. Journal of Geophysical Research-Atmospheres, 110. D01102https://doi.org/10.1029/2004JD005420.
- Kruskal, W.H. and Wallis, W.A. (1952) Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association, 47(260), 583–621.
- Lenters, J.D. and Cook, K.H. (1999) Summertime precipitation variability over south america: role of the large-scale circulation, Monthly Weather Review, 127(3), 409–431. https://doi.org/10.1175/1520-0493(1999)127<0409:SPVOSA>2.0.CO;2
- Liebmann, B., Camargo, S.J., Seth, A., Marengo, J.A., Carvalho, L.M., Allured, D., Fu, R. and Vera, C.S. (2007) Onset and end of the rainy season in South America in observations and the ECHAM 4.5 atmospheric general circulation model. Journal of Climate, 20(10), 2037–2050. https://doi.org/10.1175/JCLI4122.1.
- López-Moreno, J.I., Fontaneda, S., Bazo, J., Revuelto, J., Azorin-Molina, C., Valero-Garcés, B., Morán-Tejeda, E., Cincente-Serrano, S.M., Zubeita, R. and Alejo-Cochachín, J. (2014) Recent glacier retreat and climate trends in cordillera Huaytapallana, Peru. Global and Planetary Change, 112, 1–11. https://doi.org/10.1016/j.gloplacha.2013.10.010.
- Maussion, F., Gurgiser, M., Großhauser, M., Kaser, G. and Marzeion, B. (2015) ENSO influence on surface energy and mass balance at Shallap glacier, cordillera Blanca, Peru. The Cryosphere, 9, 1633–1683. https://doi.org/10.5194/tc-9-1663-2015.
- Perry, L.B., Seimon, A., Andrade-Flores, M.F., Endries, J.L., Yuter, S.E., Velarde, F., Arias, S., Bonshoms, M., Burton, E.J., Winkelmann, I.R. and Cooper, C.M. (2017) Characteristics of precipitating storms in glacierized tropical Andean cordilleras of Peru and Bolivia. Annals of the American Association of Geographers, 107(2), 309–322. https://doi.org/10.1080/24694452.2016.1260439.
- Perry, L.B., Seimon, A. and Kelly, G.M. (2014) Precipitation delivery in the tropical high Andes of southern Peru: new findings and paleoclimatic implications. International Journal of Climatology, 34(1), 97–215. https://doi.org/10.1002/joc.3679.
- Philander, S.G.H. (1983) El Nino southern oscillation phenomena. Nature, 302(5906), 295–301. https://doi.org/10.1038/302295a0.
- Rabatel, A., Francou, B., Soruco, A., Gomez, J., Cáceres, B., Ceballos, J.L., Basantes, R., Vuille, M., Sicart, J.E., Huggel, C. and Scheel, M. (2012) Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. The Cryosphere, 7(1), 81–102. https://doi.org/10.5194/tc-7-81-2013.
- Ramirez, E., Francou, B., Ribstein, P., Descloitres, M., Guerin, R., Mendoza, J., Gallaire, R., Pouyaud, B. and Jordan, E. (2001) Small glaciers disappearing in the tropical Andes: a case-study in Bolivia: Glaciar Chacaltaya (16 S). Journal of Glaciology, 47(157), 187–194. https://doi.org/10.3189/172756501781832214.
- Ramirez, E., Hoffmann, G., Taupin, J.D., Francou, B., Ribstein, P., Caillon, N., Ferron, F.A., Landais, A., Petit, J.R., Pouyaud, B. and Schotterer, U. (2003) A new Andean deep ice core from Nevado Illimani (6350 m), Bolivia. Earth and Planetary Science Letters, 212(3–4), 337–350. https://doi.org/10.1016/S0012-821X(03)00240-1.
- Ribstein, P., Tiriau, E., Francou, B. and Saravia, R. (1995) Tropical climate and glacier hydrology: a case study in Bolivia. Journal of Hydrology, 165(1–4), 221–234. https://doi.org/10.1016/0022-1694(94)02572-S.
- Rodwell, M.J. and Hoskins, B.J. (2001) Subtropical anticyclones and summer monsoons. Journal of Climate, 14(15), 3192–3211. https://doi.org/10.1175/1520-0442(2001)014<3192:SAASM>2.0.CO;2.
- Ronchail, J. and Gallaire, R. (2006) ENSO and rainfall along the Zongo valley (Bolivia) from the Altiplano to the Amazon basin. International Journal of Climatology, 26(9), 1223–1236. https://doi.org/10.1002/joc.1296.
- Seluchi, M.E., Saulo, A.C., Nicolini, M. and Satyamurty, P. (2003) The northwestern Argentinean low: a study of two typical events. Monthly Weather Review, 131(10), 2361–2378. https://doi.org/10.1175/1520-0493(2003)131<2361:TNALAS>2.0.CO;2.
- Soruco, A., Vincent, C., Francou, B. and Gonzalez, J.F. (2009) Glacier decline between 1963 and 2006 in the cordillera real, Bolivia. Geophysical Research Letters, 36. L03502. https://doi.org/10.1029/2008GL036238.
- Sulca, J., Takahashi, K., Espinoza, J.C., Vuille, M. and Lavado-Casimiro, W. (2018) Impacts of different ENSO flavors and tropical Pacific convection variability (ITCZ, SPCZ) on austral summer rainfall in South America, with a focus on Peru. International Journal of Climatology, 38(1), 420–435. https://doi.org/10.1002/joc.5185.
- Takahashi, K., Montecinos, A., Goubanova, K. and Dewitte, B. (2011) ENSO regimes: reinterpreting the canonical and Modoki El Niño. Geophysical Research Letters, 38, L10704. https://doi.org/10.1029/2011GL047364.
- Thompson, L.G., Mosley-Thompson, E., Dansgaard, W. and Grootes, P.M. (1986) The little ice age as recorded in the stratigraphy of the tropical Quelccaya ice cap. Science, 234(4774), 361–364. https://doi.org/10.1126/science.234.4774.361.
- Trenberth, K.E. (1997) The definition of El Niño. Bulletin of the American Meteorological Society, 78(12), 2771–2778. https://doi.org/10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2.
- Urrutia, R. and Vuille, M. (2009) Climate change projections for the tropical Andes using a regional climate model: temperature and precipitation simulations for the end of the 21st century. Journal of Geophysical Research-Atmospheres, 114. D02108. https://doi.org/10.1029/2008JD011021.
- Veettil, B.K., Bremer, U.F., de Souza, S.F., Maier, É.L.B. and Simões, J.C. (2016) Influence of ENSO and PDO on mountain glaciers in the outer tropics: case studies in Bolivia. Theoretical and Applied Climatology, 125(3–4), 757–768. https://doi.org/10.1007/s00704-015-1545-4.
- Veettil, B.K., Wang, S., Simões, J.C., Ruiz Pereira, S.F. and de Souza, S.F. (2018) Regional climate forcing and topographic influence on glacier shrinkage: eastern cordilleras of Peru. International Journal of Climatology, 38, 979–995. https://doi.org/10.1002/joc.5226.
- Vimeux, F., Gallaire, R., Bony, S., Hoffmann, G. and Chiang, J.C. (2005) What are the climate controls on δD in precipitation in the Zongo Valley (Bolivia)? Implications for the Illimani ice core interpretation. Earth and Planetary Science Letters, 240(2), 205–220. https://doi.org/10.1016/j.epsl.2005.09.031.
- Vuille, M. (1999) Atmospheric circulation over the Bolivian Altiplano during dry and wet periods and extreme phases of the southern oscillation. International Journal of Climatology, 19(14), 1579–1600.
- Vuille, M., Bradley, R.S. and Keimig, F. (2000) Interannual climate variability in the Central Andes and its relation to tropical Pacific and Atlantic forcing. Journal of Geophysical Research-Atmospheres, 105(D10), 12447–12460. https://doi.org/10.1029/2000JD900134.
- Vuille, M., Carey, M., Huggel, C., Buytaert, W., Rabatel, A., Jacobsen, D., Soruco, A., Villacis, M., Yarleque, C., Timm, O.E. and Condom, T. (2017) Rapid decline of snow and ice in the tropical Andes–impacts, uncertainties and challenges ahead. Earth-Science Reviews, 176, 195–213. https://doi.org/10.1016/j.earscirev.2017.09.019.
- Vuille, M., Hardy, D.R., Braun, C., Keimig, F. and Bradley, R.S. (1998) Atmospheric circulation anomalies associated with 1996/1997 summer precipitation events on Sajama ice cap, Bolivia. Journal of Geophysical Research-Atmospheres, 103(D10), 11191–11204. https://doi.org/10.1029/98JD00681.
- Wagnon, P., Ribstein, P., Francou, B. and Sicart, J.E. (2001) Anomalous heat and mass budget of Glaciar Zongo, Bolivia, during the 1997/98 El Niño year. Journal of Glaciology, 47(156), 21–28. https://doi.org/10.3189/172756501781832593.